4. СВОБОДНО-РАДИКАЛЬНЫЕ РЕАКЦИИ В БИОЛОГИЧЕСКИХ СИСТЕМАХ
Радикалы свободные – атомы или группы химически связанных атомов, обладающие свободными валентностями, т.е. неспаренными (нескомпенсированными) электронами на внешней (валентной) орбитали. Наличие неспаренных электронов определяет высокую химическую реакционную способность и электронный спиновый магнетизм свободных радикалов.
Фундаментальные закономерности реакций с участием свободных радикалов были установлены Н.Н. Семеновым и его учениками и послужили основой для создания нового раздела физики — химической физики. Значение свободных радикалов в биологических процессах начали изучать в 30-х гг. 20 века.
Многочисленные данные свидетельствуют об участии свободных радикалов в нормальном функционировании живых клеток и тканей, а также в развитии некоторых патологических состояний. Установлено, что процесс старения сопровождается появлением и накоплением в тканях аномальных количеств свободных радикалов и перекисей. Свободные радикалы обладают выраженным мутагенным эффектом. Предполагают, что свободнорадикальные процессы играют существенную роль в онкогенезе. Антибактериальное действие некоторых антибиотиков объясняют их способностью образовывать свободные радикалы, обладающие цитолитическим эффектом в отношении бактериальных клеток.
Стабильные свободные радикалы используют в качестве меток и зондов при изучении конформации белков и нуклеиновых кислот, а также при исследовании механизма взаимодействия субстрата с ферментом, антигена с антителом, свойств биологических мембран и т.п.
В живых организмах свободные радикалы образуются в результате реакций одноэлектронного окисления или восстановления молекул соответствующими донорами или акцепторами электрона, например кислородом или металлами переменной валентности, а также непосредственно под действием ионизирующего или ультрафиолетового излучения.
Рисунок 3.1. Механизм пероксидного окисления липидов
Одним из механизмов управления внутриклеточного метаболизма является перекисное окисление липидов. Усиление этого процесса ведет к образованию избыточного количества свободных радикалов, что нарушает состояние клеточных мембран и коллоидное состояние протоплазмы. Ведущую роль в запуске перекисного окисления липидов играют первичные свободные радикалы (кислород и его активированные формы). При перекисном окислении липидов окислительным превращениям подвергаются полиненасыщенные жирнокислотные фосфолипиды, нейтральные жиры и холестерин, которые являются основными компонентами клеточных мембран. Поэтому при стимуляции перекисного окисления липидов в мембранах уменьшается содержание липидов, а также меняются их микровязкость и электростатический заряд. При более глубоком окислении фосфолипидов нарушается структура липидного бислоя и появляются дефектные зоны в мембранах клеток, а это нарушает функциональную активность. [5]
Перекисное окисление мембранных липидов – спутник рака, лучевых поражений, старения, некоторых отравлений; и во всех случаях применяют универсальный метод борьбы с этим злом. Суть этого метода довольно проста... Даже незначительное снижение стационарной концентрации активных частиц приводит к тому, что окисление перестает быть цепным. Это общее свойство всех цепных реакций, и останавливают их почти всегда одинаково, подменяя активные частицы менее реакционноспособными с помощью ловушек радикалов. Ловушками обычно служат соединения, при одноэлектронном окислении которых активными радикалами образуются тоже радикалы, но более инертным. В медицине в качестве таких ловушек (их принято называть антиоксидантами) используют и синтетические препараты (например, дибунол), и вещества природного происхождения (токоферол, аскорбиновая кислота).
Рисунок 4.2. Структура антиоксидантов, применяемая для борьбы с раковыми опухолями
В отличие от природных антиоксидантов - витаминов С и Е - дибунол является синтетическим препаратом. Антиоксиданты защищают липиды, белки и нуклеиновые кислоты от от окислительных повреждений, являющихся спутниками и причиной многих заболеваний.[6]
Одноэлектронное восстановление кислорода может происходить в клетках и тканях при участии ряда ферментов, таких как ксантиноксидаза, глюкозооксидаза и др. Действие некоторых антибиотиков основано на том, что они обеспечивают одноэлектронное восстановление молекулярного кислорода, отводя поток электронов от терминальных оксидаз бактериальной клетки. В результате образуются супероксидные, а значит, и гидроксильные радикалы, вызывающие в конечном счете гибель такой клетки.
При действии ионизирующего и ультрафиолетового излучений на аминокислоты, белки, нуклеотиды, нуклеиновые кислоты, жирные кислоты и липиды в результате отрыва электрона или разрыва химической связи образуются различные Р. с., а также первичные продукты фотолиза — сольватированный (т. е. захваченный молекулами среды, в основном воды) электрон, атом водорода и органические радикалы.
При затраченной энергии ионизирующего излучения в 100 эВ образуется 2—4 свободных радикала, при поглощении каждых 100 квантов света возникает всего несколько свободных радикалов.
В результате реакции с участием свободных радикалов в облученных белках и нуклеиновых кислотах происходит химическая модификация макромолекул (разрывы пептидных или нуклеиновых связей, образование "сшивок", химические изменения различных аминокислотных остатков, нуклеотидов и др.). Химическая модификация приводит к изменению структуры макромолекулы, ее формы и биохимических свойств, появлению точковых мутаций, к инактивации ферментов, разрушению биологических мембран и т.д.
Полагают, что функционально самой важной и универсальной по распространению группой свободных радикалов, в живых клетках являются семихиноны — анион-радикалы, постоянно образующиеся в ходе обмена веществ и энергии, а именно при окислительно-восстановительных превращениях переносчиков электронов в митохондриях, хлоропластах, мембранах бактериальных клеток и внутриклеточных мембранах эукариотов.
Большое значение для нормальной жизнедеятельности клетки, а также при развитии ряда патологическмх процессов имеют свободные радикалы, образующиеся при окислении липидов молекулярным кислородом, в первую очередь при окислении полиненасыщенных жирных кислот и жирных кислот фосфолипидов, входящих в состав липопротеидов и биологических мембран.
Как показал Б.Н. Тарусов (1954), механизм свободнорадикального окисления липидов в тканях и мембранах соответствует общим законам ценного окисления. Процесс цепного окисления начинается со стадии инициирования, причем в роли инициатора может выступать ОН-радикал, способный отнимать атом водорода у органических соединений (RH) с образованием воды и активного органического свободного радикала, участвующего в цепи последующих реакции.
Свободные радикалы участвуют в процессах окисления, окислительного фосфорилирования и тканевого дыхания. Установлено, что в норме в клетках постоянно протекают процессы свободнорадикального окисления липидов. Фагоцитоз микроорганизмов и вирусов сопровождается активацией свободнорадикального окисления.
Важную роль играют свободные радикалы в патологических процессах. Усиление свободнорадикалького окисления липидов может привести к нарушению нормальной жизнедеятельности организма и создать условия для развития ряда заболеваний. Признаками участия свободнорадикального окисления липидов в развитии того или иного заболевания, помимо активации свободнорадикального окисления, являются нарастание клинической симптоматики, а также улучшение состояния больного или его полное излечение в результате торможения свободнорадикального окисления липидов при терапии антиоксидантами.
Об активации процесса свободнорадикального окисления судят обычно по увеличению содержания в тканях и крови больных свободных радикалов, липидных гидроперекисей, альдегидов, в частности малонового диальдегида, а также по снижению содержания липидных антиоксидантов. Разработан метод регистрации уровня свободнорадикального окисления в организме больных в клинических условиях по содержанию пентана в выдыхаемом воздухе. Усиление свободнорадикального окисления липидов было обнаружено в печени при отравлении четыреххлористым углеродом, алкоголем, солями меди, озоном, кислородом; в коже после УФ-облучения; в очагах гипоксии и воспаления и при ожогах; в сетчатке глаза при чрезмерном освещении; во всех органах и тканях при развитии лучевой болезни и на определенных стадиях онкогенеза; при некоторых инфекционных болезнях, авитаминозах, воспалительных процессах: в мозге животных усиление свободнорадикального окисления липидов было выявлено при экспериментальной эпилепсии и т.д. Однако патогенетическая роль свободнорадикального окисления липидов во всех этих случаях пока не ясна.
Состояние больных или животных (в условиях эксперимента) почти всегда значительно улучшается после терапии биоантиоксидантами: например, уменьшается эритема, вызванная УФ-облучением кожи, снижается токсическое действие на организм четыреххлористого углерода, купируются эпилептические припадки (в эксперименте), увеличиваются сроки консервации клеток и органов. Описано успешное применение антиоксидантов при печении ожогов и ишемической болезни сердца, связанной с атеросклерозом.
Большое внимание исследователи уделяют роли свободных радикалов в онкогенезе, Обнаружена корреляция между способностью ряда онкогенов к образованию свободных радикалов и их онкогенной активностью. Как правило, по мере развития опухоли концентрация свободных радикалов в тканях снижается в 2—6 раз по сравнению с контролем, а интенсивность свободнорадикального окисления в других тканях организма обычно повышается, особенно на терминальных стадиях болезни, что, возможно, связано с перераспределением антиоксидантов между тканью злокачественной опухоли и другими тканями.[7]
ЗАКЛЮЧЕНИЕ
В своей работе я рассмотрела, как проявляют себя свободные радикалы в реакциях, происходящих в природной среде. Среди них есть множество жизненно важных для организмов, как например реакции окисления в клетках, значимых для окружающей среды, таких как реакции с озоном и оксидами азота в атмосфере или процессы в водоемах.
Здесь я постаралась коротко описать наиболее значимые и интересные аспекты этого вопроса, поскольку в общем тема очень обширная и по сути каждый радикал заслуживает отдельного подробного изучения.
СПИСОК ЛИТЕРАТУРЫ
1. Koppenol, 1990 #7
2. http://www.cmjournal.com/rp218.htm
3. http://admin.novsu.ac.ru/uni/scpapers.nsf
4. Чибисова Н.В., Долгань Е.К. Экологическая химия: Учебное пособие / Калинингр. ун-т. - Калининград, 1998. - 113 с.
5. http://moikompas.ru/compas/lipid_oxidation
6. http://vivovoco.rsl.ru/HOME/PAPERS/TEXT/DRUGS/DRUGS_3.HTM
7. http://www.curemed.ru/medarticle/articles/34450.htm
... . Комбинированные методы дают дополняющую друг друга информацию, позволяющую произвести правильную идентификации веществ, которые не могут быть опознаны с помощью какого- либо одного метода.[11-12] Глава 3. Примеры применения хроматографии в анализе объектов окружающей среды Анализ состояния водной среды с помощью метода газовой хроматографии[13-15] Метод газовой хроматографии для анализа ...
... тому назад, возможности эффективности применения в радиобиологии ингибиторов радикальных процессов ещё далеко не исчерпаны. ГЕРОНТОЛОГИЯ Полвека назад сформировалась химическая физика – новая область естествознания, пограничная между физикой и химией. В этой области современная теоретическая и экспериментальная физика нашла огромное многообразие объектов исследования, а химия получила ...
... пластмасс различного назначения. Приводимый ниже материал предназначен для студентов химического отделения, специализирующихся по органической химии и химии и физике высокомолекулярных соединений, а также может быть полезен аспирантам, инженерам и научным работникам. 2.1 Метод изучения релаксации напряжения Явление релаксации - это процесс перехода из неравновесного в равновесное состояние ...
... из этого можно заключить, что факт наличия коллоидных выделений в синей соли и их размеры, полученные методом оптической спектроскопии, подтверждены прямым наблюдением поверхности сколов в атомно-силовом микроскопе. Таким образом в результате изучения оптического поглощения галитов можно сделать следующие выводы. В бесцветных образцах какие-либо центры окраски отсутствуют. В синих окрашенных ...
0 комментариев