Региональные гидроклиматические взаимосвязи

Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов
Вековая динамика климатической системы Земли, ее масштабы и периодизация Предполагаемые причины и факторы климатических изменений. Циклические колебания климата Наблюдаемые последствия климатических изменений и их возможное влияние на эволюцию геосистем Ландшафтно-климатическая динамика в Центре России и сопредельных регионах на рубеже XX – XXI веков Физико-географические условия Рязанской области Источники данных Среднемноголетние и экстремальные значения метеорологических величин Пространственная неоднородность климата в пределах Рязанской области и ее физико-географические факторы Общий обзор наиболее существенных изменений регионального климата, произошедших к началу XXI века Региональные гидроклиматические взаимосвязи Климат как фактор динамики региональных экосистем Предполагаемые перспективы климатических изменений и сопряженных с ними преобразований ландшафтов
144667
знаков
17
таблиц
67
изображений

4.3 Региональные гидроклиматические взаимосвязи

 

Закономерности взаимосвязи стока различных рек. Основными факторами являются: близость расположения рек и площадь их бассейнов (рис. 1.4.3).

Рис. 1.4.3. Коэффициент корреляции многолетней динамики стока Оки и других изучаемых рек


Исходя из рис. 1.4.3, чем больше площади бассейнов и чем ближе они расположены, тем больше коэффициент корреляции многолетней динамики стока. Согласно исследованию ученых Института географии АН, в пределах 500 км коэффициент корреляции составляет не менее 0,7 у сопоставимых по площади бассейнов. Если расстояние между бассейнами составляет 1000 км, то коэффициент убывает и даже становится отрицательным, 1500 км – вновь положительный коэффициент, что, по-видимому, обусловлено характерным размером барических систем – циклонов и антициклонов. Таким образом, пространственная взаимосвязь стока в значительной степени определяется атмосферной циркуляцией, следовательно, территориальная близость весьма важна.

Модуль стока. Объем воды, проходящий через живое сечение реки за год, является важной величиной, но информативность ее ограничена. Более географичным является показатель, характеризующий интенсивность того или иного процесса, например, интенсивность водообмена (см. приложение 8). Таким показателем является модуль стока (л*сек/км2).

а)

б)

Рис. 2.4.3. Распределение средней величины модуля стока по территории Рязанской области за период: а) 1970 – 2006; б) 1990 – 2006

 < 4,0 4,5 – 5,0 5,5 – 6,0

 

4,0 – 4,5 5,0 – 5,5 > 6,0

Как показано на рисунке 2.4.3 (а), модуль стока зависит и от климатических, и от геолого-геоморфологических факторов. Максимальных величин данный показатель достигает на западном склоне Среднерусской возвышенности и северо-западной Мещере. На востоке возвышенности, в бассейне Прони он существенно меньше, что связано, по нашему мнению, не только с меньшим количеством осадков (рис 4.3.3), но и с запитыванием поверхностными водами Прони горизонтов подземных вод, приуроченных к известнякам. Характер падения известняков и морфология долины Прони весьма способствует подобным утечкам поверхностных вод. То же можно сказать и про сток Истьи.

Модуль стока Мокши, бассейн которой в значительной степени находится в пределах более континентальных районов Русской равнины достаточно близок к минимальным значениям.

Поверхностный сток с Окско-Цнинского вала и Мещеры близок к максимальным значениям. Этому способствует высокое количество осадков на северо-востоке региона (рис. 4.3.3) и выпуклая конфигурация кровли коренных пород Окско-Цнинского вала.

Если сопоставить данные рисунка 2.4.3 (а) с данными по последним 15 годам (рис. 2.4.3 (б)), когда эффект потепления и увлажнения климата проявляется особенно четко, можно отметить рост модулей стока рек, который в той или иной степени проявляется почти везде, кроме бассейна Мокши. Особенно значительно увеличение модуля стока в северной части Мещеры и западе Среднерусской возвышенности. В данном обстоятельстве проявляется нарастание контрастности климата Русской равнины в условиях роста интенсивности западного переноса (запад – все более увлажнен, восток – проявляется аридизация). Причиной может служить увеличение количества осадков, однако рост температуры способен нивелировать данное увеличение.

Для всех рек, за исключением Мокши, характерно увеличение модуля стока во времени (таблица 5).

Таблица 5. Линейный тренд модуля стока в разные десятилетия

Река 1970-1979 1980-1989 1990-1999 1997-2006
Ока -0,2 -1,8 -0,6 0,8
Гусь 3,2 -2,5 0 1,4
Пет - -5 1,5 3,4
Проня 0,8 -2,2 1 2,9
Истья -0,4 -3 1,9 0,8
Мокша 3,4 -4 1,1 1

 

Модули стока – такие показатели, которые позволяют количественно охарактеризовать различия между изучаемыми бассейнами и степень значимости этих различий. Для этого был использован метод дисперсионного анализа, смысл которого заключается в том, чтобы сгруппировать данные, например, модули стока рек по различным бассейнам, и оценить степень значимости имеющихся различий на основании сравнения дисперсии, то есть величин колебания модуля стока от года к году. Данный метод ценен тем, что даже при одинаковых средних модулях, но существенно различающихся дисперсиях, фиксируются различия между группами, поскольку в данном случае действительно имеют место различные природные режимы. Анализ только средних величин не позволяет зафиксировать имеющиеся в реальности различия.

Таблица 6. Результаты оценки значимости различий модуля поверхностного стока по бассейнам

Группы бассейнов Значимость Вероятность ошибки
1) Ока, Гусь, Пёт, Проня, Истья, Мокша 21,8% < 0,001
2) Гусь, Пёт, Проня, Истья, Мокша 14,5% < 0,001
3) Гусь, Проня, Истья, Мокша 15,0% < 0,001
4) Гусь, Истья, Мокша 11,8% 0,004
5) Истья, Мокша - 0,804

 

Результаты расчетов, приведенные в таблице 6, показывают, что значимость позиционного фактора в целом невелика и составляет в большинстве случаев менее 20%, а остальные 80% следует отнести на счет климатической нивелировки и различных случайных факторов.

Наибольшая значимость различий наблюдается при присутствии дисперсии комплексных данных по Оке, как реке, имеющей множество специфических особенностей формирования стока: Ока формирует свой сток за пределами Рязанской области, в том числе под влиянием Московского региона и обладает значительной водностью.

Внутри региона различия измеряются 15% и менее, причем исключение из комплексов данных по Среднерусской возвышенности снижает различия до 12%, а исключение данных по Мещере и учет рек только Окско-Донской равнины вообще делает различия незначительными. Это подтверждает литературные данные о принципиальных различиях поверхностного стока в пределах основных морфоструктур Русской равнины и свидетельствует о том, что ведущий фактор подобных различий в пределах небольших регионов – геолого-геоморфологический, даже при таком сравнительно малоконтрастном рельефе, как в Рязанской области.

Коэффициенты вариации. Согласно известным закономерностям, коэффициент вариации является показателем либо мощности самой системы (применительно к нашим объектам – показателем интенсивности водообмена), либо масштабов влияния внешних факторов на систему. Зачастую оба обстоятельства действуют совместно. Внешними факторами в нашем случае могут быть колебания климата, различия в геолого-геоморфологических условиях в бассейнах, неоднородность хозяйственного освоения, особенно гидротехническое строительство.

Результаты расчетов коэффициентов вариации приведены в таблице 7.

Таблица 7. Коэффициенты вариации гидрометеорологических характеристик

Реки

Показатель

Ока Истья Проня Пёт Мокша Гусь
Модуль стока 19,7% 20,3% 44,0% 43,5% 39% 29,5%
м/с Павелец м/с Елатьма
Осадки 16,67% 16,61%

Они свидетельствуют о существенно меньших колебаниях атмосферных осадков по сравнению со стоком. В этом находит подтверждение принцип изменчивости функций геосистем, которому Дьяконов К. Н. придает статус ландшафтного закона. Согласно данному принципу в любой геосистеме колебания внешних факторов меньше, чем собственных параметров на выходе, то есть временная изменчивость осадков меньше, чем параметра на выходе – стока.

В бассейнах высшего порядка происходит взаимная компенсация колебаний стока, следовательно, коэффициент вариации вновь снижается, но даже для Оки он не достигает столь низких значений, которые свойственны осадкам.

Принцип изменчивости функций объясняется внутренней сложностью системы, когда многократно передающийся импульс от компонента к компоненту увеличивает «шум», а трение расстояния – специфика любой пространственной системы – дополнительно снижает стабильность системы. Все это наблюдается в изучаемых бассейнах, особенно в тех из них, которые отличаются внутренним разнообразием природных условий (Мокша, Пёт). Максимума этот показатель достигает у Прони, так как наряду с разнообразием условий бассейн данной реки приурочен к возвышенности, где интенсивность водообмена повышена, а также имеются два водохранилища. Для Прони характерна совокупность факторов, наиболее благоприятствующая росту временных колебаний стока. Это как факторы мощности системы, так и факторы внешних воздействий.

Временные колебания осадков в Павельце несколько выше, чем в Елатьме. Колебание внешних воздействий по осадкам также высоко.

Анализ влияния климатических факторов на речной сток. Согласно данным литературы наиболее значимо речной сток зависит от колебаний осадков, в первую очередь, зимнего периода. Меньшее значение имеют метеоусловия теплого времени, так как реки переходят на автономный режим питания, а осадки подвергаются испарению и транспирации.

В случае близкого расположения к поверхности грунтовых вод возможно их испарение и снижение стока, но такие процессы характерны для более юго-восточных районов и для Рязанской области это в целом нетипично.

Важное влияние на сток могут оказывать метеоусловия переходных сезонов, в первую очередь апреля и октября, так как именно в данное время осуществляется подпитка грунтовых вод.

В случае интенсивного перевода поверхностного стока в подземный в данном сезоне среднегодовой сток будет более стабильным. Причем особую значимость для стока имеют условия предшествующего сезона.

Для установления связи стока с климатическими факторами использовались суммы осадков теплого (май - сентябрь), холодного (ноябрь – март) периодов, средняя температура за указанный период, температура и осадки апреля и октября.

Расчет производился для бассейнов рек Гусь и Проня, как бассейнов, ближайших к метеостанциям, по которым имеется наиболее полный ряд данных – Елатьма и Павелец. Использовался метод пошаговой регрессии с постепенной выбраковкой факторов, влияние которых на результат незначимо (см. пункт 2.3).

В ходе анализа рассчитывался также коэффициент детерминации – R2, характеризующий степень адекватности уравнения, реальных данных и вероятность ошибки (приемлемый уровень ошибки составляет 0,05 (5%)).

Результаты представлены в таблице 8. Факторы в приведенных зависимостях перечислены в порядке убывания их значимости независимо от характера их влияния (знак коэффициента).

Таблица 8. Связь стока с климатическими параметрами по результатам регрессионного анализа

Объект Уравнение зависимости

R2

Бассейн

р. Гусь

Y = -0,129 + 0,089ОСХП +0,063ОСо + 0,022ОСТП – 0,012ТХП

0,338 0,015

Бассейн

р. Проня

Y = 0,269 + 0,260ОСХП – 0,031ТХП – 0,030ТТП – 0,024То-пред

0,389 0,013

 

Примечание: ОСХП, ОСТП и ОСо – осадки соответственно холодного периода (ноябрь – март), теплого периода (май – сентябрь) и октября данного года, в сотнях мм; ТХП, ТТП и То-пред - температура соответственно холодного, теплого периодов и октября предыдущего года, в 0С;  - уровень значимости.

Для Гуся наиболее значимыми оказались осадки холодного периода и осадки октября предшествующего года, что вполне закономерно. Однако достаточно значимой является роль осадков теплого периода (увеличивают сток реки Гусь). Таким образом, в условиях Мещеры вполне возможно достаточно интенсивное дождевое питание рек. В этой связи выглядит закономерным то, что модуль стока увеличивается наиболее интенсивно именно в Мещере, поскольку и осадки увеличиваются осенью и зимой. Сток реки Гусь зависит и от температуры холодного периода (чем ниже температура, тем сильнее промерзает почва, тем лучше условия для весеннего стока, следовательно, коэффициент отрицательный). Однако данная взаимосвязь наиболее слабая. Таким образом, сток реки гусь зависит главным образом от осадков.

Для Прони максимального значения коэффициент достигает также для осадков холодного периода, но роль данного фактора на порядок более значительна, чем для Мещерских рек (развитие эрозионного рельефа). Также существенно увеличивается влияние температуры холодного периода на сток Прони. В числе факторов появляется температура теплого периода и температура октября предшествующего года (в обоих случаях зависимость отрицательная).

Таким образом, для Прони, расположенной южнее, значительную роль играет фактор испарения, что способствует снижению среднегодового стока. Для реки Гусь роль фактора испарения практически не проявлялась.

Бассейн Прони, расположенный в условиях практически полной распаханности и, кроме того, на возвышенности, характеризуется зависимостью стока от зимнего промерзания почвы, поэтому влияние зимних температур для Прони существенно выше, чем для Гуся, где в условиях преобладания лесной растительности, почва может вообще не промерзать.

Таким образом, различия в уровнях зависимости стока от климатических параметров определяются как зональными различиями, так и геолого-геоморфологическими факторами, причем последние, по нашему мнению, в целом преобладают. Также проявляется влияние хозяйственной деятельности.

Сравнение величин коэффициентов при осадках и температуре позволило заключить, что отклик поверхностного стока на колебания осадков в 7 – 9 раз более значителен, чем на изменение температуры. Предположительно в последние годы увеличивается роль температурного фактора в формировании поверхностного стока.

Остатки от уровня регрессии характеризуют степени стационарности во времени процесса стока. При анализе можно выявить годы, существенно отличающиеся от других по факторам формирования стока, когда на него влияли неучитываемые внешние воздействия. Наличие тренда в остатках свидетельствует о направленном изменении стока во времени.

Анализ остатков от уравнений, рассчитанных для Гуся и Прони, свидетельствует о наличии значимого положительного тренда, то есть о закономерном росте стока, что подтверждают и другие методы исследования. Хорошо заметно, что положительные аномалии «группировались» в основном в 90-е годы. Современная динамика, то есть динамика в первые годы XXI века пока еще не установлена. Возможно, многоводные годы сменятся маловодными.

Характер колебания остатков во времени содержит информацию о характере устойчивости систем водосборов, в частности, опираясь на данные Пузаченко Ю. Г. [8], можно сделать вывод, что процессы в бассейне реки Гусь соответствуют так называемой модели Лапласа (значительная роль циклических автоколебаний). График остатков для Прони больше соответствует модели Пуассона. Различия в данных моделях сводятся к разным скоростям процессов и различиям в эффективности саморегуляции.

Модель Пуассона характеризует малостационарный процесс с интенсивным нарастанием и практически полным отсутствием внутренних стабилизирующих факторов. В результате резко возрастают случайные колебания с большой амплитудой. По нашему мнению, это обусловлено особенностями рельефа Среднерусской возвышенности, который способствует высоким скоростям движения воды как при таянии снега или дождевом стоке, так и при стекании воды по руслам рек. Более равнинный рельеф Мещеры, даже при отсутствии водоупора – юрских глин, способствует стабилизации процессов стока.

Итогом анализа особенностей формирования стока бассейнов рек является классификация водотоков на основе мер связности их гидрологических режимов (рис. 3.4.3). Четко выделяется две группы бассейнов: реки Мещеры и Окско-Донской равнины (Гусь, Пёт, Мокша) и реки более возвышенной территории (Истья, Проня, Ока). Внутри каждой группы прослеживается весьма тесная взаимосвязь. Это происходит из-за сходства природных условий формирования стока. Связь между группами выражена слабее, но также довольно значительна (коэффициент корреляции составляет 0,676). Это связано с близостью расположения бассейнов, что обусловливает сходство климатических параметров.

 

Рис. 3.4.3. Классификация водотоков Рязанской области на основе мер связности их гидрологических режимов


Информация о работе «Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов»
Раздел: География
Количество знаков с пробелами: 144667
Количество таблиц: 17
Количество изображений: 67

Похожие работы

Скачать
122623
3
3

... даже фотографией. Была в обители и своя типография, где печаталась духовная и образовательная литература. Глава 3. Оценка перспектив развития и потенциала религиозного туризма в Калужской области   3.1 Разработка критериев оценки туристических ресурсов района Для современной рыночной экономики России все более актуальным становится вопрос оптимизации развития региональной экономики, ...

Скачать
458839
60
1

... при крайне отсталой про­изводственной базе легкой и пищевой промышленностей, гражданского машиностроения и сельского хозяйства. Каждая из этих проблем по своему осложняет интеграцию России в мировую экономику. Перестройка хозяйственного механизма закономерно сопровождается всплеском инфляции, нехваткой финансовых ресурсов, резким сужением платежеспособности населения многих предприятий. В итоге — ...

Скачать
122687
24
0

... ­щихся новых альтернативных систем земледелия. Глубокие изменения в общественно-политической сфере, в со­циально-экономической жизни России определили необходимость совершенствования и развития систем земледелия. Это связано с многоукладностью сельскохозяйственного производства в условиях перехода к рыночной экономике, обострением экологических про­блем на фоне большого количества землевладельцев ...

0 комментариев


Наверх