10.2 Расчет гарантированного питания
Для расчета потребляемой аппаратурой мощности необходимо исходить из следующего:
- коммутационная станция NEAX 7400 потребляет мощность 400 Вт;
- конвертор ССПС – 128 потребляет 250 Вт;
- компьютер потребляет 300 Вт;
- мультиплексор SMS - 150C потребляет 105 Вт.
Потребляемая мощность аппаратурой комплекса «Обь -128Ц» Ро , Вт, определяется по следующей формуле
РО = РN + РC + РK + РS , (10.1)
где РN - мощность, потребляемая коммутационной станцией NEAX 7400;
РC - мощность, потребляемая конвертером ССПС - 128;
РK - мощность, потребляемая компьютером;
РS- мощность, потребляемая мультиплексором SMS -150C.
Подставив численные значения в формулу (10.1), находим мощность потребляемую аппаратурой комплекса
РО=400 + 250 + 300 + 105 = 1055 Вт.
Выходная мощность аккумуляторной батареи РАК , Вт·ч, определяется по формуле
РАК = U∙С, (10.2)
где U - номинальное напряжение одного модуля батареи, U =108 В;
С - номинальная емкость батареи, С = 7 А∙ч.
Подставив численные значения в формулу (10.2), находим выходную мощность шести модулей батарей
РАК = 6∙108·7=4536 Вт·ч.
Теперь время гарантированного питания ТГАР , ч, можно рассчитать по формуле
ТГАР = РАК / РО , (10.3)
где РАК - мощность двух модулей аккумуляторных батарей;
РО - мощность потребляемая аппаратурой комплекса «Обь -128Ц»
Подставив численные значения в формулу (10.3), находим время гарантированного питания аппаратуры комплекса «Обь -128Ц»
ТГАР = 4536/1055 = 4,3 ч.
Исходя из полученного расчета следует, что источник бесперебойного питания будет обеспечивать гарантированное питание в течении приблизительно 5 часов.
Заключение
В результате данной работы при помощи специализированных программ MATWORX и TERM разработан учебный методический пакет цифровой оперативно-технологической связи на базе аппаратуры «Обь -128Ц».
В первом разделе рассмотрен анализ принципов построения сети цифровой связи ОТС.
Далее рассмотрены структурные схемы организации сетей ОТС, а также системы резервирования и обеспечения готовности сети.
Во втором разделе произведен анализ структуры цифрового построения комплекса «Обь – 128Ц». Приведено обоснование комплекса «Обь – 128Ц», а также технические характеристики и работа комплекса.
Разработаны функции настройки, контроля и программирования конвертора ССПС – 128 и коммутационной станции NEAX7400, входящие в состав комплекса.
В третьем разделе данного проекта рассмотрены принципы построения цифровых групповых каналов.
В четвертом разделе проекта разработаны схемы организации цифрового канала.
В пятом разделе рассмотрена разработка программного обеспечения комплекса «Обь – 128Ц » с приведением функций настройки и контроля конвертера ССПС – 128, а также приведены способы программирования коммутационной станции NEAX 7400.
В шестом разделе приведена разработка алгоритмов программирования диспетчерских и промежуточных пунктов, а также организация управления системой при помощи терминала управления с использованием цифровых пультов.
В седьмом разделе проекта произведена оценка экономической эффективности организуемого учебного методического пакета на базе комплекса «Обь – 128Ц ».
В восьмом разделе разработаны мероприятия по охране труда и безопасности жизнедеятельности, а также приведен расчет освещенности в аудитории учебного центра.
В девятом разделе данного проекта приведен расчет надежности аппаратуры комплекса «Обь – 128Ц ».
Электропитание комплекса «Обь -128Ц приведено в десятом разделе, в котором также рассчитано гарантированное питание комплекса.
Список использованных источников
1. Волков, В.М. Технологическая телефонная связь на железнодорожном транспорте / В.М. Волков, А.П. Зорько, В.А. Прокофьев; отв. ред. и сост. В.М. Волков. – М.: Транспорт, 1990. – 294 с.
2. Горелов Г.В. Телекоммуникационные технологии на железнодорожном транспорте / Г.В. Горелов, В.А. Кудряшов, В.В. Шмытинский и др.; отв. ред. и сост. Г.В. Горелов. – М.: УМК МПС России, 1999. – 576 с.
3. Руководящий технический материал по проектированию цифровых и цифро-аналоговых сетей оперативно-технологической связи. РМТ - 1 ОТС - Ц – 2000: Утв. Зам. Министра путей сообщения России, 2000. – 50 с.
4. Инструкция по пользованию конвертером ССПС-128 и коммутационной станцией NEAX7400 ICS M100MX. – Черниголовка.: – ЭЗАН. – 217 с.
5. Лебединский А.К. Системы телефонной коммутации: учебник для техникумов и колледжей железнодорожного транспорта / А.К. Лебединский, А.А. Павловский, Ю.В. Юркан. – М.: Маршрут, 2003. – 496 с.
6. Осипова, Н.Г. Руководство по выполнению дипломного проектирования : метод. пособие / Н.Г. Осипова. – Хабаровск : Изд-во ДВГУПС, 2007. – 100 с.
7. Блиндер, И.Д. Цифровая оперативно – технологическая связь железнодорожного транспорта России : учебное иллюстрированное пособие/ И.Д. Блиндер. – М.: Маршрут, 2005. – 55 с.
8. Шайтанов, К.Л. Системы оперативно – технологической связи : метод. указания / К.Л. Шайтанов, Н.Г. Осипова. – Хабаровск : Изд-во ДВГУПС, 2008. – 23 с.
9. Мамота, Б.А. Безопасность жизнедеятельности. Примеры решения задач : учебное пособие. – В 2-х частях. – Ч.2 / отв. ред. и сост. Б.А. Мамота. – Хабаровск : Изд-во ДВГУПС, 2002. – 84 с.
10. Тесленко, И.М. Освещение производственных помещений: учебное пособие / И.М. Тесленко. – Хабаровск: Изд-во ДВГУПС, 2001. – 80 с.
11. Дружинин Г.В. Теория надежности радиоэлектронных систем в примерах и задачах / Г.В. Дружинин, С.В. Степанов, В.Л. Шихматова, Г.А. Ярыгин. – М.: Энергия, 1976. – 448 с.
12. Линденбаум М.Д. Надежность информационно-вычислительных систем: учебное пособие для студентов. – Ростов-на-Дону: Ростовский государственный университет путей сообщения, 1996. - 64 с.
... Каждому элементу соответствует численный и символьный идентификатор. В имя переменной включается полный путь до нее от корневого элемента root. 3. Система мониторинга и администрирования 3.1 Системы управления технологическим сегментом магистральной цифровой сети связи ОАО «РЖД» РФ При построении современных цифровых сетей следует различать следующие сетевые уровни: уровень первичной ...
... РАТС связь по принципу «каждая с каждой» становится неэкономичным. Поэтому на крупных ГТС при емкости от 50 тыс. номеров до 500 тыс. номеров, для уменьшения общего количества СЛ на сети и увеличения их использования, связь между РАТС устанавливается не непосредственно друг с другом, а через узлы входящего сообщения (УВС). При таком построении сети территория города делится на узловые районы. В ...
... 2.1 Особенности концепции учрежденческой автоматической телефонной станции Технический уровень. При проектировании необходимо применение цифровой учрежденческой автоматической телефонной станции (УАТС), построенной на унифицированной архитектуре, обеспечивающую масштабируемость, надежность, простоту обслуживания. УАТС должна обеспечить: масштабируемость; возможность наращивания внутренней ...
... возможно после большого количества предварительных заявок от абонентов, удаленных от узла связи. 2 ТЕХНИЧЕСКАЯ ЧАСТЬ 2.1 Анализ оснащенности участка проектирования В Мичуринском региональном центре связи в качестве магистральных линий связи применяются как симметричные кабели (МКПАШп, МКСАШп и т. д.) различной емкости, так и волоконно-оптический кабель, который существует еще не на всех ...
0 комментариев