2.  Расчётная часть

Как уже было сказано ранее, бериллиевая бронза БрБ2 содержит в своём составе (по массе) 97,5% Cu, 0,5% Ni, 2% Be.

Если условно обозначить медь, как компонент 1, никель, как компонент 2 и бериллий, как компонент 3, то можно для каждого компонента этой тройной системы переписать уравнение (1.3), подставив в него уравнение (1.6) в следующем виде:

 (2.1)

 (2.2)

 (2.3)

Для определения активностей компонентов бронзы при 25°С необходимо установить температурные зависимости энергий смешения Q в низкотемпературном интервале. Для этого можно использовать диаграммы состояния бинарных систем.

Для систем Be – Cu и Be – Ni такие зависимости были получены предшествующими исследователями. В данной работе будет выполнен анализ зависимостей для системы Cu – Ni.


2.1  Расчёт зависимости энергий смешения компонентов системы Cu – Ni от температуры

Рассмотрим низкотемпературную часть диаграммы Cu – Ni (см. рис. 1.7). Ниже линии солидуса образуется ряд непрерывных твёрдых растворов с решёткой ГЦК. Однако при температурах ниже 342°С наблюдается купол расслаивания на твёрдый раствор на основе меди (обозначим его, как α-фазу) и твёрдый раствор на основе никеля (обозначим его, как γ-фазу). Внутри купола находится смесь этих фаз.

На границе купола α-фаза находится в равновесии с γ-фазой. Это можно записать следующими уравнениями:

 (2.4)

Для любого из компонентов 1 и 2 и в α- и в γ-фазе справедливо соотношение:

 (2.5)

Обе фазы имеют одинаковую структуру (ГЦК). Это можно объяснить высоким сродством меди и никеля. На диаграмме состояния (рис. 1.7) видно, что сплав плавится конгруэнтно во всём диапазоне концентраций. Более того, линии ликвидуса и солидуса расположены очень близко друг к другу, то есть плавление происходит почти в изотермических условиях, как у чистого металла. Аналогично происходит и испарение сплава.

На основании этого можно записать, что:

 (2.6)

Тогда система (2.4) перепишется в виде:

 (2.7)

Обозначим через х мольные доли компонентов в α-фазе, а через N – мольные доли компонентов в γ-фазе, и учитывая условия нормировки их на единицу, можно систему уравнений (2.7) с учётом (1.3) и (1.6) переписать в следующем виде:

 (2.8)

Если бы были известны мольные доли x и N при 25°С, то можно было бы с помощью (2.8) непосредственно вычислить значения Q при этой температуре. Однако при столь низкой температуре невозможно получить экспериментальных данных о координатах купола расслаивания. Дело в том, что наступление равновесия между фазами происходит, благодаря диффузии атомов, а в комнатных условиях она протекала бы экстремально долго (несколько сотен лет). Поэтому необходимо изучить температурную зависимость энергий смешения и экстраполировать её на уровень комнатных температур.

Если T=const и известны все x и N, то система уравнений (2.8) линейна относительна параметров Q и может быть решена аналитически.

Обозначим . Если теперь перенести правую часть системы (2.8) в левую, то она перепишется в виде:

 (2.9)

Выразим  из первого уравнения системы (2.9):

 (2.10)

Подставим (2.10) во второе уравнение системы (2.9):

 

 (2.11)

Теперь можно выразить в явном виде величину :

 (2.12)

Теперь приведём выражения в числителе и знаменателе дроби (2.12) к общему знаменателю:

(2.13)

Умножив числитель и знаменатель дроби (2.13) на выражение , окончательно получим:

(2.14)

Система уравнений (2.9) не имеет степеней свободы, поэтому случайная погрешность отсутствует. Возможно, пользуясь законом накопления ошибок, определить систематическую погрешность и рассчитать доверительный интервал для значений Q. В данной работе это не учитывается.

Координаты купола расслаивания при различных температурах были сняты с диаграммы состояния Cu – Ni (рис. 1.7) и представлены в таблице 2.1.

Табл. 2.1. Координаты купола расслаивания твёрдого раствора при разных температурах.

t, oC

Состав α-фазы (Cu) Состав γ-фазы (Ni)

x1

x2

N1

N2

200 0,650 0,350 0,013 0,987
225 0,633 0,367 0,027 0,973
250 0,580 0,420 0,053 0,947
275 0,513 0,487 0,073 0,927
300 0,467 0,533 0,113 0,887
325 0,387 0,613 0,187 0,813
342 0,300 0,700 0,300 0,700

Для каждой из температур были проведены вычисления значений энергий смешения.  вычислены по формуле (2.14), а  при известной  по формуле (2.10). Для вычислений была использована компьютерная программа, текст которой приведён в приложении А.

Результаты вычислений приведены в таблице 2.2, а график температурной зависимости энергий смешения – на рисунке 2.1.

Табл. 2.2. Значения энергий смешения компонентов системы Cu – Ni при разных температурах

T, K

Q12(1), Дж/моль

Q12(2), Дж/моль

473 -3197,734 15175,28
498 -465,2206 13963,91
523 642,8817 12621,02
548 -507,406 11923,95
573 870,6937 11582,78
598 2055,722 11269,64

Рис. 2.1. Зависимости энергий смешения компонентов системы Cu – Ni от температуры.



Информация о работе «Определение термодинамических активностей компонентов бронзы БрБ2»
Раздел: Химия
Количество знаков с пробелами: 46574
Количество таблиц: 9
Количество изображений: 9

Похожие работы

Скачать
56351
25
13

... VIII – CuO + NiO2 + {O2}. Области I и V очень малы и в масштабе диаграммы вырождаются в линии. Анализируя диаграмму Cu – Ni – O можно сделать следующие выводы о химической устойчивости медно-никелевых сплавов: 1) Окисление сплавов начинается уже при давлениях кислорода в газовой фазе над сплавами большем чем  атм. Поэтому медно-никелевые сплавы будут окисляться кислородом воздуха при 25оС. 2) ...

0 комментариев


Наверх