5.4 Описание основного оборудования
Двухшнековый экструдер – принцип действия его основан на вращении шнеков в одинаковом направлении. Митериал непрерывно поворачивается вдоль отверстия, вокруг шнеков, имеющих форму 8. Благодаря профилю шнека, прочесывающему всю зону пространства, в котором протекает технологический процесс, достигается высокая степень гомогенизации и самоочистки.
Технические данные экструдера приведены в таблице 4.
Таблица 4. – Технические данные экструдера
Производи-тельность, кг/час | Диаметр щнека, мм | Число оборотов шнека, об/мин | Масса, кг | Мощность Обогрева, кВт | Мощность электродвигателя, кВт |
До 600 | 90 | 12,5–125 | 7500 | 55 | 19,2 |
Принцип работы экструдера Э-3000.
Дозированная загрузка материала в двухшнековый экструдер производится прямо через наполнительную горловину наполнительной камеры. Принудительные перемещения обеспечиваются встраиванием специального шнекового элемента со сдвигающей кромкой. Производительность зависит от свободного поперечного сечения прохода, наклона шнека и числа оборотов, а также от внешней и внутренней сил трения и помехи вращению в надсводной части шнека. Оптимальное втягивание продукта обеспечивается выбором геометрии шнековых элементов и стравливанием воздуха в последующей технологической цепи.
Пластификация, гомогенизирование и диспергирование обеспечивается за счет встраивания специальных месительных элементов.
В зоне дегазации вытягиваются потенциально имеющиеся в материале летучие компоненты.
В конце шнека в зоне вывода продукта создается давление, обеспечивающее преодоление сопротивления потока выносимого материала, а также механизма замены сит и формазадающих инструментов. Несмотря на открытие канала, достигается частично принудительное транспортирование благодаря влиянию сопротивления надсводной части.
5.5 Расчет температуры расплава в формующей головке
Технологический процесс производства композиционных материалов обусловлен такими параметрами, как температура, скорость охлаждения потока, скорость вращения шнека и потери давления в формующей головке. Температура расплава влияет на прочность, относительное удлинение, вязкость расплава и соответственно изменяются потери давления в формующей головке, производительность и степень гомогенизации расплава.
Известно, что полимеры перерабатываются при различных температурах, но для каждого метода выбираются температуры, обеспечивающие необходимые значения вязкости расплава. Поскольку формование материала происходит при выдавливании расплава через более узкую щель, то температура полимера повышается. Расчет температуры расплава основан на использовании показателя текучести расплава.
Для расчета температуры расплава при производстве композиционных материалов используем уравнение (2.1), [2]
Тэ= , (1)
Где E =18 кДж/моль – энергия активации вязкого течения, при скоростях сдвига [2].
R=8,314 кДж/моль·К – универсальная газовая постоянная;
Ti=150єС – температура переработки;
Используя показатель текучести расплава = 3,0 г/10 мин, по номограмме 4, находим:
=2,5·104 Па – напряжение сдвига [2];
=2,1·104 Па – напряжение сдвига [2];
=1,2 ·101,с-1 – скорость сдвига [2];
Тэ==175,59єС
... исходных веществ. Свойства растворителей и реагентов Отметим, что все исследования проводились с одной партией исходных и синтезированных веществ. Ключевым фактором при создании композитов на основе целлюлозы хлопковой и биоцидного компонента явилась предварительная активация исходных компонентов для придания способности к структурной и химической взаимной иммобилизации и дополнительной ...
... коэффициент трения и удельный износ. Результаты исследований приведены на рис№10, №11. Рис.10. Рис.11 Глава IY. Технология изготовления триботехнических материалов на основе полимеров 4.1. Принципы создания композиционных материалов на основе полимеров Эксплуатационная долговечность машин и механизмов в ряде случаев определяется надежностью работы узлов трения. Применение ...
... . В связи с вышеизложенным, цель данной работы заключается в исследовании свойств соосажденных манганат (IV) силикатов кальция, а также поиск оптимального содержания пигмента в покрытиях на основе алкидного лака ПФ-060 и грунтовочных композиций на его основе. 3 Объекты и методы исследования В работе использовали соосажденный манганат (IV) силикат кальция в соотношении 10% Na2SiO3. 3.1 ...
... химическое, макроструктурное модифицирование и одновременное обогащение бентопорошка, позволяют повысить сорбционные свойства и качество готовой продукции. 3.4 Разработка полимерных композиционных материалов на основе органоглин на основе бентонита месторождения «Герпегеж» Объектами исследований в данной части работы являются нанокомпозиты, полученные на основе органомодифицированных ...
0 комментариев