5. Гель-хроматография
Гель-фильтрация (синоним гель-хроматография) — метод разделения смеси веществ с различными молекулярными массами путем фильтрации через различные так называемые ячеистые гели. [7]
Неподвижной фазой в гель-хроматографии является растворитель, находящийся в порах геля, а подвижной – сам растворитель, т.е и подвижную и неподвижную фазы составляет одно и тоже вещество или одна и та же смесь вещества. Гель готовят на основе, например, декстрана, полиакриламида или других природных и синтетических соединений.
В отличии от других хроматографических методов , использующих различия в химических свойствах разделяемых веществ, проявляющихся при их распределении между стационарной и подвижной фазами, разделение основано на ситовом эффекте, характерном для гелей с определенным радиусом пор. Растворитель (подвижная фаза) заполняет как внешний объем между зернами геля, так и внутренний объем пор. Объем растворителя между зернами геля – Vм называют промежуточным, транспортным или мертвым объемом, а внутренний объем пор – Vп рассматривается как объект стационарной фазы. Когда в колонку вводят пробу, содержащую несколько типов ионов или молекул с разными размерами, то они стремятся из подвижной фазы проникнуть внутрь пор. Такое проникновение обусловлено энтропийным распределением, поскольку концентрация молекул разделяемых веществ в наружном растворе оказывается выше, чем в поровом пространстве. Но оно становится возможным только в том случае, если размеры ионов или молекул меньше диаметра пор. [3]
Рис 5 Общий вид градуировочной кривой в гель-хроматографии:
1 – область исключения, где все молекулы имеют размер больше m2;
2 – область проникновения или разделения, где размеры молекул лежат в интервале от m1 и m2;
3 - область, где происходит полное проникновение молекул с размерами менее m1. [3]
В процессе гель-хроматографирования могут быть отделены крупные молекулы, которые гелем не сорбируются, так как их размеры превышают размеры пор, от мелких, которые проникают в поры, а затем могут быть элюированы. Проводятся и более тонкие разделения, так как размеры пор можно регулировать, изменяя, например, состав растворителя и, как следствие, набухаемость геля. Гель-хроматография может быть выполнена в колоночном варианте и в тонкослойном.
Применяемые на практике гели обычно подразделяют на мягкие, полужесткие и жесткие. Мягкими гелями являются высокомолекулярные органические соединения с незначительным числом поперечных связей. Фактор емкости, равный отношению объема растворителя внутри геля к его объему вне геля, у них равен 3. При набухании они значительно увеличивают собственный объем. Это сефадексы или декстрановые гели, агарочные гели, крахмал и др. Они применяются для разделения смесей низкомолекулярных веществ, часто в тонкослойном варианте. Хроматографирование на мягких гелях называют гель - фильтрацией.
Полужесткие гели получают путем полимеризации. Большое распространение получили стирогели — продукты сополимеризации стирола и дивинилбензола с большим числом поперечных связей. Фактор емкости полужестких гелей лежит в пределах 0,8...1,2, их объем при набухании увеличивается не очень значительно (в 1,2...1,8 раза ). Хроматографирование на полужестких гелях называют гель-проникающей хроматографией.
К жестким гелям относят силикагели и часто пористые стекла, хотя они и не являются гелями. Жесткие гели имеют небольшой фактор емкости (0,8...1,1) и фиксированный размер пор. Эти материалы используют в гель-хроматографии при высоком давлении.
Растворители гель-хроматографии должны растворять все компоненты смеси, смачивать поверхность геля и не адсорбироваться на ней.
Практическое применение гель-хроматографии связано, главным образом, с разделением смеси высокомолекулярных соединений, хотя нередко они используются для разделения и низкомолекулярных, так как разделение этим методом возможно при комнатной температуре. [2]
6. Высокоэффективная жидкостная хроматография (ВЖКХ)
Высокоэффективная жидкостная хроматография – наиболее эффективный метод анализа органических проб сложного состава. Процесс анализа пробы делится на 2 этапа:
· разделение пробы на составляющие компоненты;
· детектирование и измерение содержания каждого компонента.
Задача разделения решается при помощи хроматографической колонки, которая представляет собой трубку, заполненную сорбентом. При проведении анализа через хроматографическую колонку подают жидкость (элюент) определенного состава с постоянной скоростью. В этот поток вводят точно отмеренную дозу пробы.
Компоненты пробы, введенной в хроматографическую колонку, из-за их разного сродства к сорбенту колонки двигаются по ней с различными скоростями и достигают детектора последовательно в разные моменты времени.
Таким образом, хроматографическая колонка отвечает за селективность и эффективность разделения компонентов. Подбирая различные типы колонок можно управлять степенью разделения анализируемых веществ. Идентификация соединений осуществляется по их времени удерживания. Количественное определение каждого из компонентов рассчитывают, исходя из величины аналитического сигнала, измеренного с помощью детектора, подключенного к выходу хроматографической колонки.
При анализе соединений с низкими ПДК (биогенные амины, полиароматические углеводороды, гормоны, токсины) из-за трудоемкости подготовки реальных проб особенно важной характеристикой становится чувствительность и селективность метода. Применение флуориметрического детектора позволяет не только снизить пределы обнаружения, но и селективно выделить анализируемые вещества на фоне матричных и сопутствующих компонентов пробы.
Метод ВЭЖХ применяется в санитарно-гигиенических исследованиях, экологии, медицине, фармацевтике, нефтехимии, криминалистике, для контроля качества и сертификации продукции.
В качестве блока подачи элюента используется насос "Питон" шприцевого типа, который имеет следующие особенности:
· отсутствие пульсаций давления при подаче растворителя;
· большой диапазон объемных скоростей потока;
· большой объем камеры насоса;
· расширяемость (возможность сочетать несколько блоков для создания градиентной системы).
В хроматографической системе могут использоваться различные типы детекторов, например, "Флюорат-02-2М" (спектральная селекция осуществляется фильтрами) или "Флюорат-02 Панорама" (спектральная селекция осуществляется монохроматорами). [8]
7. Применение
Жидкостная хроматография важнейший физико-химический метод исследования в химии, биологии, биохимии, медицине, биотехнологии. Ее используют для анализа, разделения, очистки и выделения аминокислот, пептидов, белков, ферментов, вирусов, нуклеотидов, нуклеиновых кислот, углеводов, липидов, гормонов и т. д.; изучения процессов метаболизма в живых организмах лекарственных препаратов; диагностики в медицине; анализа продуктов химического и нефтехимического синтеза, полупродуктов, красителей, топлив, смазок, нефтей, сточных вод; изучения изотерм сорбции из раствора, кинетики и селективности хим. процессов.
В химии высокомолекулярных соединений и в производстве полимеров с помощью жидкостной хроматографии анализируют качество мономеров, изучают молекулярно-массовое распределение и распределение по типам функциональности олигомеров и полимеров, что необходимо для контроля продукции. Жидкостную хроматографию используют также в парфюмерии, пищевой промышленности, для анализа загрязнений окружающей среды, в криминалистике. [9]
Заключение
Начало ХХ века ознаменовалось открытием хроматографического метода анализа, обогатившего и объединившего различные области науки, без которых немыслим научный прогресс XXI века. Внедрение хроматографических методов, и в первую очередь жидкостной хроматографии, в медицину позволило решить многие жизненно важные проблемы: исследование степени чистоты и стабильности лекарственных средств, препаративное выделение индивидуальных гормональных препаратов (например, инсулина, интерферона), количественное определение в биологических объектах нейромедиаторов: адреналина, норадреналина. С наличием этих веществ в живом организме связывают способность к запоминанию, обучению, приобретению каких-либо навыков. Идентификация методами ВЭЖХ стероидов, аминокислот, аминов и других соединений оказалась крайне важной при диагностике некоторых наследственных заболеваний: инфаркта миокарда, диабета, различных заболеваний нервной системы. Одной из актуальных задач клинической медицины для экспресс-диагностики является проведение так называемого профильного анализа компонентов биологического объекта, осуществляемого методами жидкостной хроматографии, что позволяет не проводить идентификацию каждого пика, а сопоставлять профили хроматограмм для заключения о норме или патологии. Обработка огромного массива информации осуществляется только с использованием ЭВМ (метод получил название "метод распознавания образов").[10]
Список литературы
1. Васильев В. П. Аналитическая химия, В 2 кн. Кн. 2 Физико-химические методы анализа: Учеб. для студ. вузов, обучающихся по химико-технол. спец. – 4-е изд., стереотип. – М.: Дрофа, 2004 – 384 с.
2. Москвин Л.Н., Царицына Л.Г. Методы разделения и концентрирования в аналитической химии . – Л.: Химия, 1991. – 256 с.
3. http://bibliofond.ru/view.aspx?id=43468
4. http://ru.wikipedia.org/wiki/Бумажная_хроматография
5. http://referats.qip.ru/referats/preview/93743/6
6. http://www.curemed.ru/medarticle/articles/12186.htm
7. http://www.lumex.ru/method.php?id=16
8. http://www.xumuk.ru/encyklopedia/1544.html
9. http://www.pereplet.ru/obrazovanie/stsoros/1110.html
10. http://www.chem.msu.su/rus/teaching/oil/spezprakt-chr.html
11. http://www.prochrom.ru/ru/?idp=110
... изготовленными из пористого материала, плотно и равномерно упакованными (в окружении жидкости) по всему объему колонки. Химический состав гранул и окружающей рабочей жидкости определяют тип хроматографии. Далее мы рассмотрим важнейшие из этих типов подробно. Сейчас же, чтобы к этому более не возвращаться, коснемся некоторых моментов, связанных с подготовкой колонок низкого давления для любого ...
... щелочноземельных элементов и магния методом ионной высокоэффективной жидкостной хроматографии Разработка и совершенствование методов, позволяющих решать задачи анализа вод- важная проблема аналитической химии. Развитие высокоэффективной жидкостной хроматографии высокого давления стимулировало развитие нового направления в ионообменной хроматографии- так называемой ионной хроматографии. Синтез ...
... psi Обработка данных и составление отчетов с помощью ПО Galaxie TMПриложение МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ. ИЗМЕРЕНИЕ МАССОВЫХ КОНЦЕНТРАЦИЙ АВЕРСЕКТИНА (СМЕСИ ИЗОМЕРОВ) В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ МЕТОДОМ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1. Подготовлены НИИ медицины труда РАМН (Макеева Л.Г., Муравьева Г.В.).2. Разработаны ООО НБЦ "Фармбиомед" (В.Т. Тер-Симонян, ...
... способности проникать в гель – гель-хроматография. Этот метод позволяет разделять смеси веществ, обладающих различной молекулярной массой. В настоящее время хроматография получила существенное развитие. Сегодня разнообразные методы хроматографии, особенно в сочетании с другими физическими и физико-химическими методами, помогают научным сотрудникам и инженерам решать самые различные, часто очень ...
0 комментариев