Контрольная работа
«Моделирование электрических цепей с нелинейными элементами»
Введение
Цель работы: приобретение навыков графического ввода, редактирования и анализа принципиальных схем в среде Micro-CAP.
Выполнение работы
1. Моделирование схем с резистивным НЭ Соберём схему с резистивным НЭ. (рис. 1)
Рис. 1
Выберем модель диода 1S2460. В режиме DC Analysis зададим параметры для первой варьируемой переменной: Method – Auto, Name – V1, Range – 2. В качестве независимой переменной укажем напряжение на аноде диода V(1), а в окне X Expression зададим переменную I(D1). Построим ВАХ. (график 1)
График 1
Зададим диапазон измерения температуры –40…+70 С0 и включив линейную шкалу изменения температуры, повторим моделирование в режиме DC. (график 2)
График 2
Заменим диод D1 в схеме на стабилитрон, подсоединив его катодом к плюсу источника (встречное включение). В открывшемся окне задания параметров моделирования диода установим, следующие значения: BV = 3 В, RS = 4 Ом. Построим ВАХ стабилитрона, задав пределы изменения напряжения источника V1 в пределах 0…4 В. Измерить напряжение стабилизации (пробоя). (график 3)
График 3
Соберём схему дифференцирующей RC-цепи. Установим следующие параметры генератора V1: амплитуда импульса – 10 В, начало переднего фронта – 0,1 мкс, длительность импульса TИ = 5R1C1, период повторения T = 2TИ. (рис. 2)
Рис. 2
В режиме Transient построим графики функций: V(1), V(R1), V(3). (график 4)
График 4
Поменяем полярность включения диода и повторим предыдущий пункт.
График 5
Соберём однопериодный выпрямитель переменного тока (рис. 3), подключив к электрической цепи генератор Sine Source. Выберем модель генератора – GENERAL и зададим следующие параметры для моделирования:
F = 1 кГц; A = 10 В; DC = 0; PH = 0; RS = 1 Ом; RP = 0; TAU = 0.
Рис. 3
Построим графики V(1), V(R1) и I(D1), задав максимальное время моделирования 10 мс. Измерим величину пульсаций выходного сигнала в конце переходного процесса. (график 6)
График 6
Проведём многовариантный анализ схемы, задав изменение величины резистора R1 в пределах 10…150 Ом с шагом 100 Ом. (график 7)
График 7
Соберём следующую схему (рис. 4)
Рис. 4
Проведём анализ схемы в режиме Transient, построив графики V(1), V(2), V(3) в одном графическом окне, а график I(D2) – в другом. (график 8)
График 8
Заменим в схеме источник переменного напряжения на источник постоянного напряжения, установив величину напряжения источника 10 В. Проведём анализ схемы в режиме постоянного тока (режим Dynamic DC) при V1 = 10 В. Определим значения узловых потенциалов, токов в ветвях схемы и мощностей, рассеиваемых на элементах схемы. (рис. 5)
Рис. 5
2. Исследование характеристик транзистора
Исследуем вольтамперную характеристику транзистора, для чего соберём схему (рис. 6), установив следующие параметры моделирования: I1 = 1 мА, V1 = 5 В. В качестве транзистора Q1 выбрав модель 2N2368.
Рис. 6
Включим режим DC и в строке Variable 1 зададим имя первой варьируемой переменной – V1 с диапазоном изменения 0…5 В. Для второй переменной (Variable 1) укажем имя I1 с диапазоном изменения 0…5 мА и с шагом 0,5 мА. Установим линейный метод варьирования обеих переменных. (график 9)
График 9
Соберём схему транзисторного усилителя (рис. 7). В качестве источника входного сигнала V1 использован источник Sine Source, выберем модель генератора – «1МГц» и зададим амплитуду синусоидального сигнала 0,1 В.
Рис. 7
Используя режим Transient построим графики входного (V(V1)) и выходного (Vc(Q1)) напряжений. (график 10)
График 10
В режиме многовариантного анализа познакомимся с работой усилителя, установив вариацию входного напряжения в диапазоне 0.1…0.6 В с шагом 0.3 В. (график 11)
График 11
Построим амплитудно-частотную и фазочастотную характеристики усилителя, установив в режиме AC диапазон изменения частоты 1…100 МГц. (график 12)
График 12
Проведём анализ режима схемы по постоянному току. (рис. 8)
Рис. 8
Вывод
резистивный нелинейный частотный постоянный
На данной контрольной работе мы приобрели навыки графического ввода, редактирования и анализа принципиальных схем в режимах анализа переходных процессов (Transient), частотного анализа (АС) и анализа в режиме постоянного тока (Dynamic DC. Познакомились с характеристиками транзистора в среде программы MICRO-CAP.
Похожие работы
... – матрица проводимостей, обратная матрице сопротивлений ветвей. Если в функции fk и jk входят производные токов и напряжений, то процессы в этой линейной или нелинейной электрической цепи будут характеризоваться системой, соответственно, линейных или нелинейных дифференциальных уравнений. При отсутствии производных в функциях fk и jk процессы в этой линейной или нелинейной электрической цепи ...
... . Однако, после решения задачи эти фазы становятся известными. 7. Электрическая цепь, как модель оперативной коррекции Рассмотрим сдвоенную электрическую цепь с синусно-косинусными преобразователями СКП, как модель оперативной коррекции в энергосистеме (ср. также с фиг. 4.1 и см. также [3, 6, 7]). Будем использовать в ней для обозначения токов, потенциалов, напряжений и сопротивлений те же ...
... диода и повторить п. 1.3. Проанализировать полученные результаты. 1.4. Собрать схему, приведенную на рис. 14, подключив к электрической цепи генератор Sine Source. Выбрать модель генератора – GENERAL и задать следующие параметры для моделирования: F = 1 кГц; A = 10 В; DC = 0; PH = 0; RS = 1 Ом; RP = 0; TAU = 0. Рис. 9 Схема рис. 9 представляет собой простейший однопериодный выпрямитель ...
... пример анализа переходных процессов операторным методом, основанный на теоретических знаниях. В результате чего произведено более глубокое и эффективное изучение материала по теме: «Анализ переходных процессов в электрических цепях», а также освоение новых программ и приложений, требуемых при построении схем, графиков и расчёте формул. 1. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ 1.1 ...
0 комментариев