3 Разделение сигнала по форме
При разделении сигналов по форме базисные функции должны быть линейно независимыми и ортогональными. При этом передаваемая информация заключается в амплитуде базисных функций. В случае разделения по форме канальный сигнал имеет вид:
, ( 15)
где - период канального сигнала, - отсчеты первичного сигнала.
Выражение справедливо в случае, когда информация заключена в амплитуде сигнала. В качестве базиса используются функции, удобные с точки зрения технической реализации. В частности полиномы Лежандра, Матье и др. При использовании полиномов Лежандра отдельные базисные функции равны:
( 16)
Условие ортогональности в этом случае имеет вид:
( 17)
Т.о., средняя мощность каждого ортогонального колебания равна (). Для того чтобы выровнять мощность канальных сигналов на передающей стороне каждую базисную функцию умножают на .
При использовании нечетных полиномов в сигнале появляются скачки, для передачи которых потребуется широкая полоса радиоканала (рисунок 3).
Рисунок 3
Для устранения этого недостатка в передаваемом сигнале у нечетных полиномов через период изменяют полярность (рисунок 4).
Рисунок 4
Рассмотрим структурную схему передающей части системы с ортогональными сигналами (рисунок 5).
Рисунок 5
где СМУ – суммарно-масштабирующий усилитель, ГПФ – генератор полиномиальных функций, ГТЧ – генератор тактовой частоты, ГНК – генератор несущего колебания, К – ключ, С – синхронизатор.
Первичный сигнал - непрерывная функция времени. ГТЧ формирует кратковременный импульс с частотой . Ключ К хранит значение отсчетов за весь период, а синхронизатор формирует синхросигнал.
Тогда групповой будет сигнал представлен в следующем виде:
, , ( 18)
Для разделения канальных сигналов используют свойство их ортогональности. Эта операция сводится к вычислению скалярного произведения группового сигнала на базисную функцию выделяемого канала
( 19)
Структурная схема приемной части системы приведена на рисунке 6.
Рисунок 6
Ортогональные полиномы Лежандра, Чебышева и т.д. являются непрерывными аналоговыми сигналами и, следовательно, устройствам их генерирования и обработки свойственны недостатки присущие всем аналоговым устройствам:
- невозможность унификации и стандартизации большинства устройств;
- высокие требования к температурной стабильности;
- сложность технической реализации генераторов полиномиальных функций.
Поэтому в настоящее время в качестве канальных сигналов используются различные типы цифровых сигналов, в частности ансамбль функций Уолша.
4 Частотное разделение каналов (ЧРК)
ЧРК – частный случай разделения ортогональных сигналов. Базисные функции ортогональны в частотной области. Вид базисных функций:
, ( 20)
где - поднесущая частота.
Колебания ( 19) будут оставаться ортогональными при любых значениях параметров , и , если частотные спектры канальных сигналов не перекрываются.
Спектр группового сигнала показан на рисунке 7.
Рисунок 7
Для лучшего разделения каналов между спектрами канальных сигналов вводят защитный интервал . Общая ширина спектра группового сигнала :
. ( 21)
Ширина спектра зависит от вида модуляции и ширины спектра первичного сигнала.
, ( 22)
где - ширина спектра первичного сигнала,
- коэффициент, зависящий от вида модуляции, для амплитудной модуляции (АМ) .
Для частотной (ЧМ) и фазовой (ФМ) модуляции зависит от девиации частоты и индекса модуляции.
Основным недостатком системы с ЧРК является то, что с ростом числа каналов возрастает ширина спектра группового сигнала. При ЧРК сообщения можно передавать амплитудной, частотной и фазовой модуляцией. Модуляция осуществляется непрерывно при передаче всего сообщения. Обычно используют две ступени модуляции. В первой ступени каждая поднесущая может быть промодулирована по амплитуде, частоте или фазе. Возможна одновременная модуляция поднесущей по амплитуде и частоте. Эта операция удваивает число каналов без существенного расширения полосы частот тракта, но создает значительные взаимные помехи. Кроме того, можно увеличить общее число каналов, применяя однополосную модуляцию с полным подавлением одной боковой и поднесущей. Сумма модулируемых поднесущих модулирует несущую частоту передатчика по амплитуде, фазе и частоте во второй ступени модуляции. Возможны различные комбинации способов модуляции поднесущих частот и несущих колебаний:
АМ – АМ; АМ – ЧМ; ОБП – ЧМ; АМ – ОБП; ИКМ – ЧМ – ЧМ
Выбор определенного варианта построения системы с ЧРК зависти от требований к эффективности и помехоустойчивости.
Структура передающей части системы с ЧРК приведена на рисунке 8,
Рисунок 8
где ПР – преобразователь, КМ – канальный модулятор, ГНК – генератор несущего колебания, ПФ – полосовой фильтр.
Перенос спектров осуществляет КМ, а ПФ пропускают все спектральные компоненты модулированного сообщения и задерживают их гармоники. Гармоники возникают из-за нелинейности модуляционной характеристики КМ. После сумматора сигнал подается на модулятор передатчика, где происходит модуляция несущей. На первой ступени осуществляется модуляция канальных сигналов, а на второй модуляция несущей частоты. Сигнал, полученный на приемной стороне, поступает на общий демодулятор, а затем на систему из N фильтров (рисунок 9).
Рисунок 9
Амплитудно-частотные характеристики (АЧХ) фильтров аналогичны АЧХ фильтров, используемых на передающей стороне. После фильтров включены канальные демодуляторы (КД).
... на передающей и приемной станции. Нарушение синхронизма ведет к потере информации во всех каналах. В циклических РТМС через время , равное периоду опроса, начинается новый цикл. Для разделения каналов необходимо обозначить начало цикла. Для этой цели перед импульсом первого канала включается специальный сигнал (начало кадра), отличающийся от остальных сигналов по амплитуде, длительности или форме ...
... = 6300 Гц @6.3 кГц Вид группового сигнала: В первом приближении ширина спектра КИМ-ФМ-ФМ определяется шириной главного лепестка: Df = 2 * (1 / t ) = 2 * 1 /159 *10-6с = 12579Гц = 12.6 кГц 3. Расчет энергетического потенциала радиолинии Энергетическим потенциалом радиолинии называется отношение средней мощности сигнала к спектральной плотности шума, пересчитанное ко входу приемника. ...
... с обратной связью наиболее характерно для управления бортовой аппаратурой космических аппаратов. 4. Разработка функциональной схемы радиолинии 4.1 Спектр сигнала КИМ-ЧМ-ФМ Сигнал КИМ-ЧМ-ФМ является одним из наиболее часто применяемых сигналов при организации цифровой связи по радиоканалам большой длительности. Символы сигнала КИМ заполняются прямоугольными колебаниями (меандром) разной ...
... – крутизна наклона главного пика сигнальной функции; Q0=РссТизм — энергия сигнала (время измерения — 1 с). Общая ошибка по дальности (20 м) поровну распределена между запросной и ответной радиолинией, следовательно, DRmax=10 м. Зная это, найдем, что tИ<4,4·10-5 с. Следовательно, тактовая частота 2Fт должна быть меньше величины 1/tИ=22,7 кГц Выбор параметров задающего генератора и генератора ...
0 комментариев