6. Определяем среднюю рабочую скорость поршня в гидроцилиндре при движении в сторону штоковой полости
где T – время двойного хода поршня при рабочем и обратном ходе,
включая паузу;
∆t=0,1с – длительность срабатывания распределителя.
м/с м/с
Расчетная скорость поршня при рабочем ходе с учетом запаздывания вследствие утечек между поршнем и цилиндрической поверхностью гидроцилиндра равна
где kv=1,1–1,2 – коэффициент, учитывающий утечки в гидроцилиндре.
м/с; м/с
7. Необходимая подача насоса в гидроцилиндр
где nц-число гидроцилиндров, в которые насос одновременно подает масло;
ηобн-объемный КПД насоса, средние его значения принимаем в соответствии с рабочим давлением и типом насоса;
ηц= объемный КПД гидроцилиндра, ηц=0,99–1,0 при резиновых манжетах на поршне;
ηзол= 0,96–0,98 – объемный КПД золотника.
м3/с,
м3/с
м3/с=132 л/мин
По величине Qн и p выбираем по технической характеристике шестеренный насос типа НШ‑140 с Q=154 л/мин и рном=10 МПа.
8. Определяем расход гидроцилиндров во время рабочего хода:
м3/с
Выбираем реверсивный золотник типа Г74–24 с Q=70 л/мин и р=20 МПа, обратный клапан 2БГ52–14 с Q=5–70 л/мин и р=5–20 МПа и фильтр ФП‑7 с тонкостью фильтрации 25 Q=100 л/мин, р=20 МПа,
9. Определяем диаметр всасывающего трубопровода к насосу, м:
,
где Vвс – средняя скорость масла во всасывающем трубопроводе, Vвс=0,8–1,2 м/с в трубопроводах диаметром до 25 мм и 1.2–1.5 м/с при диаметрах свыше 25 мм.
Qн-количество жидкости,
м
Диаметр нагнетательного трубопровода, м, принимая Vнаг=3 м/с:
м
Подсчитываем толщину стенки трубы:
,
где [σ] – допускаемое напряжение в материале труб, [σ] =(0,3–0,5)σв, σв – предел прочности труб на разрыв: сталь 20–40 кН/см2;
Определим толщину стенки всасывающей трубы, м:
м
В соответствии со стандартными диаметрами труб по ГОСТ 8732–58 dвс=50 мм, dнаг=24 мм, определяем истинные средние скорости течения рабочей жидкости в них по формуле, м/с:
м/с
м/с
На основании схемы разводки трубопроводов производим подсчет
потерь напора на прямых участках и местных сопротивлениях, раздельно для всасывающей, нагнетательной и сливной магистралей. Для чего предварительно устанавливаем число Рейнольдса для каждой из них, которое характеризует режим движения жидкости. Число Рейнольдса на линиях подвода и слива рабочей жидкости определяем по формуле:
где Vi – средняя скорость соответственно в линии подвода или слива;
di – внутренний диаметр труб подвода или слива.
Определим число Рейнольдса для подводящего трубопровода:
Определим число Рейнольдса для нагнетательного трубопровода:
Режима течения жидкости ламинарный Re <2300, коэффициент сопротивления λ подсчитывается для круглых труб по формуле .
Считаем потерю давления на трение по длине нагнетательной, всасывающей и линии слива магистрали:
,
где λi – коэффициент сопротивления на линии подвода и слива;
p‑плотность рабочей жидкости;
li – длина трубопровода на подводе и сливе одинакового диаметра di.
кПа
Расчитываем суммарные потери в нагнетательном трубопроводе:
кПА
Во всасывающем трубопроводе:
кПа
кПа
Считаем слив жидкости:
кПа
кПа
Рабочее давление для выбора напорного золотника и насоса:
МПа
Необходимая проверка всасывающей магистрали гидронасоса на неразрывность потока:
,
где Hвс-геометрическая высота всасывания;
∑ξ – сумма коэффициентов местных сопративлений на линии всасывания насоса;
Vвс – скорость движения рабочей жидкости во всасывающей магистрали.
Условие соблюдается, диаметр всасывающего трубопровода определен правильно.
Усилие, создаваемое гидроцилиндром при рабочем ходе, равно
,
кН
где p – рабочее давление в жидкости;
F – площадь поршня при рабочем ходе ;
Rшт – сопротивление уплотнения штока;
Rп – сопротивление уплотнения поршня;
Rс – сопротивление от вытекания масла из штоковый полости гидроцилиндра.
Определяем усилие трения Rшт
,
где μ=0,10–0,13 – коэффициент трения манжет о рабочую поверхность штока;
b – высота активной части манжеты.
кН
Усилие трения Rп для манжетных уплотнений поршня:
Н
Расчет сопротивления Rс – от вытекания масла со стороны штоковой полости.
,
Н,
где pс – давление в штоковой полости.
Сопоставляем усилие Pф развиваемое в гидроцилиндре, с требуемым по условиям работы механизма Pр и находим коэффициент kзу
.
;
Определяем толщину стенок силового гидроцилиндра
,
где pпроб – пробное давление, с которым осуществляется гидравлическое испытание цилиндра;
σт – предел текучести материала: для стали 35 σт=300МПа,
ψ – коэффициент прочности для цельнотянутой трубы, ψ=1;
n – коэффициент запаса прочности при давлениях до 30МПа, n≥3;
с – прибавка к толщине стенки на коррозию наружной поверхности цилиндра; с=2–3 мм.
мм;
Толщина плоского донышка гидроцилиндра
мм;
где σр – допускаемое напряжение для материала донышка гидроцилиндра.
Под рабочим давлением pp понимают наибольшее давление в гидросистеме
в условиях эксплуатации, т.е. при наличии толчков и гидравлических ударов. Условное давление pу соответствует отсутствию гидравлических ударов в гидросистеме и на него настраивают предохранительные клапаны. Пробное давление pпроб соответствует условиям проверки корпусов элементов гидросистемы на прочность.
Напорный трубопровод подлежит проверке на гидравлический удар в случае внезапного его перекрытия, для чего определяем величину ударного давления
,
МПа
По величине pуд проверяется толщина стенки труб и гидроцилиндра.
Определение объемных потерь рабочей жидкости в гидросистеме
,
где ∆Qн, ∆Qгц, ∆Qзол – объемные утечки рабочей жидкости в насосе, гидроцилиндре и золотнике, численное значение последних определяем по их техническим характеристикам;
nц – число гидроцилиндров, питаемых от насоса одновременно.
Поэтому:
,
где ηобн – объемный КПД насоса; pн – давление создаваемое насосом.
∆Qзол=200 см3/мин=0,2 л/мин,
л/мин,
м3/с=0,37 л/мин
м3/с=0,04 л/мин
л/мин
Определение КПД гидросистемы
Объемный КПД гидропривода
;
Гидравлический КПД гидропривода
;
Механический КПД гидропривода
,
где ηмех.н – механический КПД насоса, принимается по его характеристике.
Общий КПД гидропривода
,
Устанавливаем средние скорости перемещения поршня в гидроцилиндре:
Рабочий ход
м/мин
Холостой ход
м/мин
Общее время цикла за один ход
.
Мощность, сообщенная рабочей жидкости насоса
,
кВт
Полезная мощность гидроцилиндров
,
кВт
Общий КПД гидропривода
... выемки весьма тонких пластов мощностью 0,4—0,7 м; проще схема организации работ по длине лавы; менее сложные средства комплексной механизации и автоматизации* производственных процессов в очистном забое. Кроме того, струговые установки более просты по конструкции и не имеют передачи электроэнергии по силовому гибкому кабелю к движущейся машине. Учитывая все эти преимущества, следует во всех ...
... Условно переменные расходы в себестоимости продукции, приходящиеся на единицу продукции, руб/ед Цотп =5000 руб /т. – условная отпускная цена 1тонны калийной руды, 9. Расчёт технико-экономических показателей ТЭПов Таблица 9. № п/п. Показатели Значения БТ НТ 1. Годовой объём выпускаемой продукции а) в натуральных вложениях, т/год 1394315 1395410 б) в ...
... 6-7 раз больше, чем для условий неавтоматизированного производства. Таким образом, производительность для условий автоматизированного производства определяется: шт/смену 2. Определение рациональной структуры системы технологического оборудования При обработке на автоматической линии детали «Основание» технологический процесс дифференцируется на составные части, которые выполняются в разных ...
... , транспортирования его вдоль лавы, крепления и управления кровлей способом полного обрушения в лаве. В комплекс будут входить следующее оборудование: - комбайн очистной Кузбасс 500Ю; - крепь механизированная М138/4; - конвейер шахтный скребковый КСЮ381 «Юрга-850». 2.1 ВЫБОР ОЧИСТНОГО КОМБАЙНА При выборе очистного комбайна особое внимание следует уделить исполнительному ...
0 комментариев