4. После дня великого открытия
В марте 1869 г., тут же после окончания статьи «Соотношение свойств с атомным весом элементов» Д.И. поехал на артельные сыроварни. Накануне отъезда, 1 марта 1869 г. Он разослал многим химикам отпечатанный листок с «Опытом системы элементов». 6 марта состоялся доклад о системе элементов в заседании русского химического общества.
По причине отсутствия Д.И. в Петербурге, доклад о его открытии сделал профессор Н.А. Меншуткин. В связи с этим позднее возникли различные легенды по этому поводу. Наиболее распространенной стала легенда о мнимой болезни Д.И., которую распространил Б.Н. Меншуткин (сын Н.А. Меншуткина). А М.Н. Младенцев предложил совсем уж невероятное объяснение: «Первое сообщение было сделано 6 марта 1869 г. В заседании Химического общества проф. Н.А. Меншуткиным, так как сам Д.И., видимо, волновался и не решался выступить, хотя ему и ясно было все великое значение настоящего открытия». Все эти легенды ни в коей мере не соответствуют действительности. Причина выступления Меншуткина вместо Менделеева была совсем в другом.
5. Применение Д.И. Менделеевым методов научного познания
Научное открытие такого масштаба, как открытие периодического закона, не могло бы совершиться в столь краткий срок, если бы его автор не владел в совершенстве подлинно научным методом познания, методом научного исследования явлений природы.
1) Метод восхождения.
Метод восхождения отвечает движению познания от непосредственно данного, исходного, к раскрываемому лишь опосредованно, при помощи абстрактного мышления. Следовательно, метод восхождения в самой общей форме выражает то обстоятельство, что развитие мысли в ходе научного познания, как и всякое развитие совершается не хаотически, а в определенном направлении, строго последовательно. Сам Д.И. писал: «Познание и полное обладание предметами состоит из трех степеней: 1) наблюдение, констатирование факта, я вижу, но не знаю, как сделать, отчего и пр. Ему соответствует описание, изучение факта. 2) Соотношение факта с некоторыми другими – закон, этому соответствует измерение. 3) Теория – связь внутренняя с цельным миросозерцанием… начинается гипотезою, кончается теоретическим открытием новых явлений, выводом всего из одного положения. Этому соответствует предсказание явления в совершенной его точности, открытие новых явлений».
Таким образом, становится понятно, что, вопреки существующим в нашей литературе мнениям, Д.И. не был приверженцем только индуктивного метода. Индукцию в ее правильном понимании Д.И. не противопоставляет дедукции, а фактически рассматривает в единстве с ней.
При таком методе познания происходит переход от простейших «клеточек», как их назвал сам Д.И. к более общим законам. Такой «клеточкой» стало рассмотрение в 1-ой части «Основ химии» поваренной соли NaCl. Можно сказать, что, выбрав NaCl в качестве исходного вещества при изложении систематической части химии, Д.И. выбрал нечто простое, обычное, множество раз встречающееся в практике человека. Именно такой и должна быть «клеточка» науки, с которой следует начинать изложение этой науки. Дело в том, что в этом соединении уже были даны в их естественной связи (химической) представители двух наиболее характерных, причем полярно противоположных, химических элементов – Na и Cl отправляясь от соотношения обоих этих элементов, существующего в самой природе, Д.И. нашел сразу ключ к дальнейшему развитию своей творческой мысли. Именно отсюда вытекала необходимость сопоставить две группы наиболее несходных между собой элементов – галогенов и щелочных металлов.
Следует еще отметить, что на всем протяжении совершаемого открытия Д.И. строго придерживался выработавшейся последовательности – переходить от известного к неизвестному и от более известного к менее известному.
Всякий закон в науке устанавливается в итоге обобщения. Тем самым рассмотрение метода восхождения непосредственно приводит к рассмотрению другого, связанного с ним метода, который можно назвать методом обобщения.
2) Метод обобщения. Переход от особенного ко всеобщему.
Путь познания любого закона природы исторически, вполне закономерно проходит отдельные ступени. В общем случае таких ступеней можно выделить три:
а) Исходным является собирание или накопление отдельных, единичных фактов, относящихся к изучаемому кругу явлений. Регистрируя каждый такой отдельный факт, мы высказываем полученный нами результат в форме единичности.
б) По мере накопления отдельных фактов во избежание того, чтобы не образовался неразличимый хаос данных, мы группируем или классифицируем собранный материал. Мы соединяем все сходное в одну особую группу, отличая ее от столь же особых категорий или групп. Соответственно этому мы выражаем достигнутый теперь результат в форме особенности.
в) Разбивка известных фактов на разобщенные между собой особые группы по признаку их особых свойств и на основе учета сходства, противопоставленного различию, лежит в основе искусственных или формальных классификаций. Естественная же классификация предполагает прежде всего нахождение общего признака или общей основы, лежащей в фундаменте всего данного круга явлений, и объединяющей собой все разобщенные группы. В соответствии с этим за ступенью особенности всегда следует та высшая ступень познания, на которой открывается закон природы. Открывая закон природы, мы выражаем достигнутый результат в форме всеобщности.
Таким образом, путь познания закона – это путь движения научной мысли от единичности (свойства отдельных элементов) к особенности (группы сходных по свойствам элементов) и от особенности к всеобщности (периодический закон).
Развитие научного познания, идущего от единичного через особенное ко всеобщему, может быть охарактеризовано в соответствии с тем, как логически соотносятся между собой различные звенья в общей цепи поступательного движения научной мысли. Если совокупность всех взаимосвязанных элементов принять за целое, то разбивку элементов на различные обособленные между собой группы мы можем рассматривать как деление целого на части. В таком случае переход от отдельных, обособленных групп к общей системе выступит как переход от анализа к синтезу. Напротив, вычленение или выделение из общей системы отдельных групп элементов будет означать обратное движение от синтетического подхода к аналитическому. По сути дела вся стадия разбивки элементов на их естественные группы представляет собой стадию анализа, если ее рассматривать по отношению ко всей совокупности химических элементов. Но вместе с тем, если ее брать по отношению к отдельным элементам, она выступает уже как подготовка перехода к синтезу через объединение элементов в некоторые новые единицы – группы, из которых, как из строительных кирпичиков можно будет построить здание целостной, охватывающей все элементы системы, т.е. осуществить теоретический синтез. В ходе открытия периодического закона и создания системы элементов выпукло проявилась взаимосвязь между синтезом и анализом в познавательном процессе – подготовительная функция анализа и заключительная синтеза.
3) Сравнительный метод
Суть метода, который Д.И. называл сравнительным, состоит в том, что элементы рассматриваются не изолированно, не сами по себе, а в их общей взаимной связи и в их взаимных отношениях. Уже на первых порах его применения сравнительный метод дал громадный выигрыш, так как позволял не только сопоставлять разные группы элементов между собой, но и проверять, насколько их сопоставление проведено правильно, а в связи с этим, насколько правильно составлены и сами группы.
Будучи исходным пунктом для разработки и применения сравнительного метода, сличение атомных весов подводило непосредственно к формулировке самого периодического закона, основанной на признании, что «величина атомного веса определяет характер элемента…».
Развитие Д.И. сравнительного подхода к изучению элементов вылилось 17 февраля 1869 г. В конкретную задачу: составить общую систему и найти в ней естественное место для каждой группы, а тем самым для каждого отдельного элемента.
С одной стороны, периодический закон был открыт при помощи сравнительного метода, а с другой – его открытие явилось мощным стимулом к дальнейшему совершенствованию этого метода.
Заключение
периодический менделеев познание научный
В отличие от своих предшественников, Менделеев не только составил таблицу и указал на наличие несомненных закономерностей в численных величинах атомных весов, но и решился назвать эти закономерности общим законом природы. Он взял на себя смелость на основании предположения, что атомная масса предопределяет свойства элемента, изменить принятые атомные веса некоторых элементов и подробно описать свойства неоткрытых ещё элементов.
Д.И. Менделеев на протяжении многих лет боролся за признание Периодического закона; его идеи получили признание только после того, как были открыты предсказанные Менделеевым элементы: галлий (П. Лекок де Буабодран, 1875), скандий (Л. Нильсен, 1879) и германий (К. Винклер1886) – соответственно экаалюминий, экабор и экасилиций. С середины 1880-х годов Периодический закон был окончательно признан в качестве одной из теоретических основ химии.
Хотя классификация Менделеева и имела значительные достоинства, которые способствовали ее быстрому распространению и превращению в руководящий критерий для исследований в области неорганической химии, она не была полностью лишена недостатков. Первый недостаток таблицы заключался в том, что водород, как одновалентный элемент был помещен в начале I группы. Помещение элементов меди, серебра и золота в I группе вместе со щелочными металлами и в VIII группе вместе с металлами группы железа и группы платины явно непоследовательно. Другие отклонения замечаются в VI, VII, и VIII группах.
Для того, чтобы периодическая система приобрела еще большую предсказательную силу и могла быть усовершенствована, имели значение работы по неорганической химии, проведенные в последние десятилетия XIX века. Толчком к пересмотру классификации послужили исследования редких земель, которые привели к выделению многих элементов, не поддававшихся обычному способу классификации, и к открытию благородных газов Рамзаем и Рэлеем
В начале XX века Периодическая система элементов неоднократно видоизменялась для приведения в соответствие с новейшими научными данными. Д.И. Менделеев и У. Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошли инертные газы. Инертные газы явились, таким образом, элементами, переходными между галогенами и щелочными металлами. Б. Браунер нашёл решение проблемы размещения в таблице редкоземельных элементов, предложив в 1902 г. помещать все РЗЭ в одну ячейку; в предложенном им длинном варианте таблицы шестой период таблицы был длиннее, чем четвёртый и пятый, которые в свою очередь длиннее, чем второй и третий периоды.
Дальнейшее развитие Периодического закона в было связано с успехами физики: установление делимости атома на основании открытия электрона и радиоактивности в конце концов позволило понять причины периодичности свойств химических элементов и создать теорию Периодической системы.
Мощный толчок для новых исследований внутренней природы элементов был дан открытием в 1898 г. супругами Кюри радия и тем комплексом явлений, которые известны под названием радиоактивности.
Для химии серьёзную проблему составляла необходимость размещения в Периодической таблице многочисленных продуктов радиоактивного распада, имеющих близкие атомные массы, но значительно отличающиеся периоды полураспада. Т. Сведберг в 1909 г. доказал, что свинец и неон, полученные в результате радиоактивного распада и отличающиеся по величине атомных масс от «обычных» элементов, химически им полностью тождественны. В 1911 г. Ф. Содди предложил размещать химически неразличимые элементы, имеющие различные атомные массы (изотопы) в одной ячейке таблицы.
В 1913 г. английский физик Г. Мозли установил, что корень из характеристической частоты рентгеновского излучения элемента (н) линейно зависит от целочисленной величины – атомного номера (Z), который совпадает с номером элемента в Периодической таблице:
,
где А и b – константы
Закон Мозли дал возможность экспериментально определить положение элементов в Периодической таблице. Атомный номер, совпадающий, как предположил в 1911 г. голландский физик А. Ван Ден Брук, с величиной положительного заряда ядра атома, стал основой классификации химических элементов. В 1920 г. английский физик Дж. Чедвик экспериментально подтвердил гипотезу Ван ден Брука; тем самым был раскрыт физический смысл порядкового номера элемента в Периодической системе. Периодический закон получил современную формулировку: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер атомов элементов».
В 1921–1923 гг., основываясь на модели атома Бора-Зоммерфельда, представляющей собой компромисс между классическими и квантовыми представлениями, Н. Бор заложил основы формальной теории Периодической системы. Причина периодичности свойств элементов, как показал Бор, заключалась в периодическом повторении строения внешнего электронного уровня атома.
Список использованных источников
1. Кедров Б.М. День одного великого открытия. – М.: Эдиториал УРСС, 2001. – 640 с.
2. Ахметов Н.С. Актуальные вопросы курса неорганической химии. – М.: Просвещение, 1991. – 224 с.
3. Корольков Д.В. Основы неорганической химии. – М.: Просвещение, 1982. – 271 с.
4. Джуа М. История химии. – М.: Мир, 1975. – 480 с.
... периодов, начиная с четвёртого. В главных подгруппах сверху вниз металлические свойства усиливаются, а не металлические свойства ослабляются. Все элементы побочных подгрупп являются металлами. 2.4 Периодический закон и его обоснование Периодический закон позволил привести в систему и обобщить огромный объем научной информации в химии. Эту функцию закона принято называть интегративной. ...
... разовая) – 0,01%. 4 Содержание Введение......................................................................................................................4 Глава 1. Межпредметные связи в курсе школьного предмета химии на примере углерода и его соединений.......................................................................5 1.1 Использование межпредметных связей для формирования у учащихся ...
... удобрений в Смоленской, Петербургской, Московской и Симбирской губерниях. Менделеев уделял большое внимание орошению земель Нижнего Поволжья. 6. Участие ученого в аэродинамике и гидродинамике. Дмитрий Иванович Менделеев всегда служил образцом ученого, тесно связывающего свои открытия с их промышленными приложениями, в частности, не отрывал свои научные интересы в области аэродинамики от ...
... , имеющая дело со строением атомов и исследующая неизвестные до того времени силы и взаимодействия частиц в ядре атома. Три открытия 1932 г. считаются особенно важными для дальнейшего развития атомной и ядерной физики: 1. открытие нейтрона; 2. обнаружение позитрона К. Андерсоном в космических лучах. Это была первая открытая учеными античастица; 3. открытие американским химиком Г. ...
0 комментариев