2. Одночастотные когерентно - импульсные РЛС

При когерентных методах непрерывного излучения в ка­честве опорного сигнала можно использовать сигнал гене­ратора высокой частоты. В когерентно - импульсном методе такой возможности нет, ибо генератор радиочастоты рабо­тает в импульсном режиме. Таким образом, в паузе между зондирующими импульсами необходим дополнительный ис­точник опорного сигнала. Для этого обычно применяется когерентный генератор или гетеродин, работающий в ре­жиме фазовой синхронизации с генератором радиочастоты.

Структурная схема когерентно-импульсной РЛС пока­зана на рис. 1. На выходе детектора (Д) образуются биения отраженного и опорного сигналов когерентного ге­теродина (КГ). Однако сигнал U2 имеет импульс­ный характер, поэтому даже при непрерывном опорном сиг­нале когерентного гетеродина биения возникают лишь во время существования отраженного сигнала.

Рис. 1. Структурная схема когерентно-импульсной РЛС

Рассматривая только выходное напряжение детектора, кото­рое после фильтрации является чисто импульсным, можно получить следующие зависимости [1] для сигналов движущейся и неподвижной целей:

(1.1)

(1.2)

где

сигнал не­подвижной цели; Um дц - амплитуда сигнала движущейся цели; М = Um дц /Um2 нц - коэффициент модуляции сиг­нала биений.

Формулы (1.1) и (1.2) дают последовательности мо­дулированных по амплитуде видеоимпульсов, спектральный состав которых показан на рис. 2.

Рис. 2. Спектральный состав видеоимпульсов на выходе детектора

Сравнивая импульсы движущихся и неподвижных це­лей, можно сделать заключение, что основным отличием временных функций, соответствующих этим последователь­ностям, будет наличие переменной составляющей в сигнале движущейся цели. Переходя к спектральным представлениям, можно утверждать, что спектр немодули­рованных видеоимпульсов, соответствующих функции вре­мени f1(t), будет состоять лишь из гармоник частоты повто­рения (рис. 2, а). Спектр знакопеременной последовательности модулированных видеоимпульсов, соответствую­щих функции времени f2(t), будет состоять из гармоник nFп ± Fм (рис. 2 б). Наконец, спектр последовательно­сти видеоимпульсов, соответствующих функции времени fS(t)= f1(t)+ f2(t), будет состоять из гармоник nFп и nFп ± Fм (рис. 2 в).

Следовательно, для селекции движущихся целей необ­ходимо компенсировать на выходе элемента сравнения им­пульсные последовательности с постоянной амплитудой или подавлять в спектре сигнала после элемента сравнения все гармоники частоты повторения nFп.

Однако при построе­нии устройств селекции движущихся целей в когерентно-импульсных РЛС следует учитывать наличие так называе­мого стробоскопического эффекта.

Запишем выражение (1.2) с учетом фильтрации по­стоянной составляющей:


Очевидно, что это выражение будет однозначной функцией п только в пределах однозначности функции косинуса его аргумента. Поэтому можно считать, что для однозначной связи Umб и n необходимо, чтобы


Это соотношение должно выполняться для любого п. По­этому, полагая п = 2, получаем пределы однозначного со­ответствия частоты биений импульсной последовательности частоте Доплера


При увеличении fд > Fп/2 за счет периодичности косинуса получаем периодическое повторение указанного соответст­вия.

На рис. 3 показана зависимость частоты биений от частоты Доплера. Видно, что в случае, когда частота Доплера кратна частоте повторения, последовательность им­пульсов оказывается немодулированной, так как fб =0.



Рис. 3. Зависимость частоты биений от частоты Доплера

С учетом этого и выражение для значения частоты Доплера получаем


Таким образом, модуляция импульсов движущейся це­ли отсутствует, а следовательно, сигналы движущейся и не­подвижной целей при радиальных скоростях, удовлетворяю­щих условию (1.3), не различаются. Эти скорости называют­ся «слепыми». Цель, двигающаяся с одной из «слепых» ско­ростей, за период повторения приближается или удаляется от радиолокатора на расстояние, кратное целому числу по­ловины длины волны несущего колебания радиолокатора. При этом разность фаз прямого и отраженного сигналов за период повторения будет изменяться на величину, кратную 2p.

Способ построения когерентно-импульсных систем се­лекции выбирается в зависимости от соотношения парамет­ров импульсной модуляции. Обычно различают когерентно-импульсные РЛС, работающие в режимах малой и высокой скважности. Естественно, граница разделения весьма услов­на и соответствует значению скважности Q = 10. При Q < 10 имеем режим малой скважности, а при Q > 10 - большой скважности [1].

Основным преиму­ществом когерентно-импульсной РЛС, рабо­тающей в режиме высокой скважности, является высокая разрешающая способ­ность по дальности.

Различают истинно когерентные и псевдокогерентные РЛС, которые часто называют также когерентными РЛС селекции движущихся целей. Различие этих систем заключа­ется в способе построения передающего



Рис. 4. Структурная схемы истинно когерентной РЛС высокой скважности

устройства и способе получения опорного когерентного напряжения, что при­водит к различному интервалу когерентности сигналов РЛС.

На рис. 4 приведен пример схемы истинно когерент­ной РЛС высокой скважности. Передатчик построен по мно­гокаскадному принципу. Стабильные колебания задающего генератора промежуточной частоты (ГПЧ) умножаются по частоте и усиливаются в усилителе мощности (УМ). Одновре­менно в этом же каскаде происходит импульсная модуля­ция сигнала с высокой скважностью и частотой повторе­ния, зависящей от модулятора (М). С помощью второго умножителя частоты (УМЧ), на кото­рый подаются колебания задающего генератора промежуточ­ной частоты, формируется гетеродинный сигнал, использу­емый для преобразования частоты принимаемых сигналов в смесителе приемника. Усиленные в УПЧ сигналы сравнива­ются с опорным колебанием генератора промежуточной частоты на фазовом детекторе (ФД).



Рис. 5. Спектры сигналов на входе, выходе РГФ и его АЧХ

Сигнал биений в виде модулированной или немо­дулированной последова­тельности видеоимпульса подается на режекторный гребенчатый фильтр (РГФ), который селектирует сигналы движу­щихся целей и подавляет все составляющие частоты повторения. После усиле­ния сигналы движущихся целей подаются на индика­тор кругового обзора (ИКО), где и происходит их обнаружение. На рис. 5 показаны спектры сигналов на входе и выходе РГФ, а также амплитудно-частотная характеристика этого фильтра.

На рис. 6 приведен пример схемы псевдокогерентной РЛС, работающей в режиме высокой скважности. При таком построении используются однокаскадные передатчи­ки. Генератор радиочастоты (ГРЧ) работает в режиме са­мовозбуждения при модуляции импульсами высокой скваж­ности. Опорный когерентный сигнал формируется КГ, который синхронизируется по фазе импульсами генератора радиочас­тоты, предварительно преобразованными на промежуточ­ную частоту, так как когерентный гетеродин работает на промежуточной частоте. Принятые сигналы сравниваются с опорным также на промежуточной частоте в фазовом де­текторе (ФД).



Рис. 6. Схема псевдокогерентной РЛС высокой скважности

импульс детектор радиоэлектронный

Особенностью псевдокогерентных РЛС является малый интервал когерентности сигнала, равный одному периоду повторения. Это объясняется тем, что колебания генератора радиочастоты имеют случайную начальную фазу от импульса к импульсу или от периода к периоду повторе­ния Следовательно, спектр таких импульсов является сплошным. Поэтому фазовая синхронизация осуществляет­ся импульсом ГРЧ в начале каждого периода повторения и когерентность колебаний ГРЧ и опорного сигнала КГ сох­раняется лишь на этот период повторения. То же повторяет­ся и в каждом следующем периоде. В двух соседних перио­дах или в двух любых периодах повторения когерентность колебаний отсутствует, поэтому РЛС и называется псевдо­когерентной.


Заключение

 

Радиолокация представляет собой средство расширения возможностей человека определять наличие и положение объектов за счет использования явлений отражения радиоволн этими объектами. Ее ближайшим конкурентом при выполнении этих функций является оптическая техника, включающая телескопы, которые обладают высокой точностью и обычно имеют фотографические регистрирующие устройства. Преимущество радиолокационных средств по сравнению с оптическими состоит в том, что радиолокационные устройства могут работать в темноте и сквозь облака, обладают большой дальностью действия и позволяют определять дальность до объекта со значительно большей точностью, нежели оптические устройства. Хотя световые волны также являются электромагнитными, но в радиолокации частота их намного ниже. Это позволяет применять радиотехнические методы и схемы.

Развитие радиолокации явилось важной частью технической революции двадцатого века. Военная техника, использующая принципы радиолокации, впервые была создана перед самым началом второй мировой войны; с этого времени наблюдается быстрый и непрерывный прогресс в указанной области.


Список литературы

1)  Перминов И.Г. «Физические основы получения информации». 2006 год.

2)  Артамонов В.М. «Электроавтоматика судовых и самолетных радиолокационных станций». 1962 год.

3)  Современная радиолокация. Анализ, расчет и проектирование. Под редакцией Кобзарева Ю.В., М., Сов.радио, 1969г.-704стр.

4)  Дулевич В.Е. Теоретические основы радиолокации. М., Сов.радио, 1978г. – 608стр.

5)  Ширман Я.Д. Теоретические основы радиолокации. М., Сов.радио, 1970г. – 560стр.


Информация о работе «Одночастотные радиолокационные станции»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 17521
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
29399
0
9

... соотношения импульсов с разными несущими частотами от 1:1 (равномерное распределение частот) до 1 : 5 потери в пороговом отношении сигнал/шум составляют не более 1 дБ. Наименее помехозащищенными являются многочастотные РЛС с линейным суммированием сигналов. Для их подавления достаточно создать эффективную помеху на одной из рабочих частот РЛС. Помеха по соответствующему частотному каналу ...

Скачать
119959
17
32

... – 3 0,1; 0,2; 0,4; 1; 2; 4 N8974A 0,01 – 6.7 0,1; 0,2; 0,4; 1; 2; 4 N8975A 0,01 – 26.5 0,1; 0,2; 0,4; 1; 2; 4 Таблица 4.3 - Технические особенности ИКШ серии NFА Структурная схема измерителя коэффициента шума N8973A представлена на рисунке 4.4. Рисунок 4.4 - Структурная схема ИКШ N8973A В преобразователе частот (блок радиоприемного тракта) спектр входного сигнала сначала ...

Скачать
129486
7
2

... предусмотренном РФ. Назначение радиосвязи МПС и МПСС: 1.  обеспечение безопасности мореплавания и охрана человеческой жизни на море 2.  обеспечение оперативно-диспетчерского руководства работой флота; экспедиций и организаций, непосредственно связанной с эксплуатацией морских судов 3.  передача данных для автоматизированных систем управления 4.  обмен официальной корреспонденцией 5.  обмен ...

0 комментариев


Наверх