2. Гибридный оптимизационный алгоритм
Блок-схема алгоритма, представленная на Рисунке 1, в целом состоит из двух разных процедур, выполняемых последовательно. Вначале оптимизатор ГА обеспечивает - посредством периодически повторяющегося, быстрого машинного моделирования возможных решений - оптимальное решение задачи с низкой точностью. Такой промежуточный результат называют грубым оптимальным решением. Далее в целях проверки того, насколько такое решение приемлемо для получения конечного решения задачи, выполняется точное моделирование грубого решения. Если при этом выявляются неудовлетворительные характеристики, т.е. смещение резонансных частот или повышенный уровень входных коэффициентов отражения, то запускается следующая процедура, основанная на АКП. На этом этапе для получения точного решения задачи, называемого точным оптимальным решением, используют локальный оптимизатор, задействующий как грубую, так и точную модель. Такое решение схоже с грубым решением, выданным ГА, в плане соответствия тех параметров, которые избраны в качестве целей оптимизации. Следовательно, разработчику нужно определить параметры, которые изменяются в процессе оптимизации - они имеют обозначения хс и хf(здесь и далее см. обозначения в тексте), а также характеристики (базисные функции, погрешность интегралов и т.п.) как грубых, так и точных моделей. Этот этап критичен, т.к. правильность выбора определяет конечный успех оптимизации. Грубая модель должна быть как можно более быстрой, но такой, чтобы ее выход Rc(хс) сохранял определенное сходство с выходом Rf(хf) от точной модели. Иначе не будет работать этап АКП. После того, как выбор сделан, оптимизатор ГА, применяя генетические операторы только к грубым моделям, находит оптимальное грубое решение, обозначаемое х*с. Если оказалось, что отклонение выхода, полученного при точном моделировании Rf(х*с) оптимального грубого решения, является более высоким, чем это приемлемо, то АКП ищет соответствие Р между точной и грубой моделями хс = Р(хf) так, чтобы Rf(хf) ≈ Rc(хс). Для определения Р выполняют итеративную локальную оптимизацию. Ключевыми этапами АКП являются фаза извлечения параметров, когда утверждается грубая модель, лучше всего подходящая для определенной точной модели; уровень обновления соответствия (картирования), когда с помощью уравнения Бройдена (Бандлер и др. 1995) изменяется оценка Р; и уровень инвертирования соответствия, когда определяется точная модель для следующей итерации. Если грубая и точная модели выбраны так, как следует, такая итеративная процедура выдает точное оптимальное решение х*f, при котром выходы Rf(хf) и Rc(хс) являются схожими вплоть до заранее установленного уровня точности. Подробнее об АКП можно прочитать в (Бандлер и др. 2004).
3. Пример оптимизации
Для проверки адекватности метода в качестве примера оптимизации предлагается определение необходимых длин и точек возбуждения для антенной решетки, состоящей из 3 х 3 излучателей (типа заплат), размещенной на конечном квадратном (заземленном?) экране и работающей на частоте 4,5 ГГц. При симметричности задачи, представленной на Рисунке 2(а), имеем всего 12 оптимизационных параметров, связанных как с длиной (L1..., L6), так и с расстоянием точек возбуждения от центра излучателя (d1,... d6). Постоянными величинами в данном примере являются ширина излучателя (W = 3 см), длина стороны экрана (Lg = 12 см) и расстояние между антеннами и землей (h = 0,15 см). Используемой подложкой является воздух.
Для решения этой задачи с помощью глобального оптимизатора необходим надежный код, который моделировал бы произвольно созданные конструкции. Все результаты, представленные в работе, получены из решения интегрального уравнения электрического поля со смешанным потенциалом, содержащего высоко-порядковые базисные функции Лежандра, с помощью метода моментов (Йоргенсен и др. 2004). При заданном специфическом наборе длин и точек возбуждения, описанном выше, для точного решения задачи требуется 6000 базисных функций и, если использовать 2,2 ГГц-ый процессор AMD Opteron, необходимо время анализа, равное 4 мин. на одну частоту. Поскольку для выполнения оптимизационного процесса в пространство поиска входит 1012 возможных решений, алгоритм µГА получает результаты оптимизации спустя примерно 3000 эмуляций. При отсутствии параллелизма обработки общее время оптимизации для такой простой задачи могло бы быть около девяти дней. Применение грубой модели элементов, дающее сокращение как числа базисных функций, так и точности интегралов, что было описано в предыдущем разделе, помогает получить результат быстрее, правда ценою смещения эмулированной характеристики по частотному спектру примерно на 100 МГц.
Таким образом, пришлось прибегнуть к выполнению оптимизации ГА-АКП. Этап ГА, где использовались только грубые модели решетки, был выполнен с помощью зарекомендовавшего себя алгоритма µГА (Кришнакумар 1989), при использовании совокупности, равной 5 элементам и смене совокупности при сходимости в 80%. В качестве операторов ГА использовались турнирный отбор и двухэлементное скрещивание (Бэк и др. 1997). Получаемые результаты имели формат с фиксированной точкой, в котором всего было 12 целых разрядов; для представления длины - от 3 до 3,25 см, а для представления расстояния точек возбуждения до центра излучателя - от 0,33 до 0,60 см. Значения, допустимые для длин излучателей в процессе ГА, были установлены с помощью аппроксимирующих уравнений, используемых для расчета частоты резонанса прямоугольной микрополосковой излучательной антенны, расположенной на бесконечном (заземленном?) экране; значения частоты лежали в интервале от 4,4 до 4,8 ГГц, что соответствовало значениям длин в 3,25 и 3 см, соответственно. Функция пригодности (соответствия) F была выбрана так, чтобы при 4,5 ГГц минимизировать максимальное значение модуля (амплитуды) входного коэффициента отражения для любой антенны решетки (F = max{|S11|i}; i = 1,...,6). На Рисунке 3 показана амплитуда входного коэффициента отражения каждого антенного элемента для такого грубого решения; у каждого излучателя здесь разные частоты резонанса, но все они находятся около желаемого рабочего значения в 4,5 Ггц.
Тем не менее, моделирование, выполненное на точной модели той же антенны, показало смещение спектра приблизительно в 130 МГц (см. Рисунок 4). Для исправления этого эффекта была проведена процедура АКП. Точное пространство определили с помощью лишь двух параметров хf, каждый из которых масштабировал соответственно значения длин и расстояний от точек возбуждения, полученных при оптимальном грубом решении. Как указано в (Бакр 2000), схождение модели лучше всего достигается при использовании в анализе нескольких частотных точек. В данном случае в интервале от 4,25 до 4,75 ГГц распределили 11 частотных точек. Фазу извлечения параметров выполнили с помощью агрессивного подхода картирования пространства (Бандлер и др. 1995), а также принятия для всех излучателей, расположенных вдоль частотной кривой нашего анализа - в качестве меры подобия точной и грубой моделей - среднеквадратической ошибки от расстояния между их соответствующими действительными частями входного полного сопротивления. Другими важными моментами выбора на этапе АКП были критерии останова процесса, которые были установлены на 10-4, а также числовая оценка аналитического определителя Якоби, выполняемая с помощью разностной аппроксимации вперед. Основной момент при достижении быстрой сходимости заключался в оценке подобия между выходами из грубой и точной моделей, когда в качестве измерительной функции использовали не амплитуду входного коэффициента отражения, а действительную часть входного полного сопротивления. Это было обусловлено тем, что большая монотонность действительной части входного полного сопротивления позволяет получить лучшие значения разностной аппроксимации вперед. Проведя всего три точных эмуляции и 45 грубых, алгоритм достиг окончательного решения. На Рисунке 5 показано эффективное корректирование рабочей точки к 4,5 ГГц.
Наконец, была выполнена оценка времени, сэкономленного за счет использования метода ГА-АКП по сравнению с методом ГА, использующим только точные эмуляции. Зная, что в данном случае расход времени на работу с точной моделью в 6,5 раз больше на одну частоту, чем при работе с грубой моделью, и что каждая точная или грубая эмуляция, выполненная на этапе АКП, решала 11 частотных точек, определили, что применение гибридного метода позволило выполнить оптимизацию примерно в 5,25 раз быстрее. Следовательно, пока показатель времени зависит от разницы между временем анализа точной и грубой моделей, для достижения большей экономии разработчику придется искать быстрее выполнимые грубые модели. В любом случае этот процесс следует выполнять очень тщательно, поскольку этап АКП эффективен только тогда, когда выход из грубой модели подобен выходу из точной.
Заключение
В данном сообщении предложена эффективная схема оптимизации антенн. Она заключается в применении вслед за основанной на ГА оптимизацией, использующей при моделировании характеристики антенны грубую модель, дополнительной процедуры АКП. Этот последний этап увеличивает точность оптимизированных результатов, а весь подход в целом, как показано, имеет преимущество с точки зрения вычислительных затрат по сравнению с применением ГА только к эмуляции точной модели. Планируются дальнейшие исследования для сравнения эффективности метода ГА-АКП с эффективностью других гибридных методов, сочетающих методы локальной оптимизации с АКП.
Список литературы:
1. Антенны и устройства СВЧ. Расчет и проектирование антенных решеток и их излучающих элементов / Под ред. Д.И. Воскресенского. М.: Сов. радио, 1972.
2. Драбкин А.Л., Зузенко В.Л., Кислов А.Г. Антенно-фидерные устройства. М.: Сов. радио, 1974.
3. Антенны и устройства СВЧ: Методические указания к лабораторным работам. Часть 1 / Под ред. А.В. Рубцова. Рязань, 2006.
4. Антенны и устройства СВЧ. Проектирование фазированных антенных решеток / Под ред.Д.И. Воскресенского. М.: Радио и связь, 1994.
... философии - особенно с методологических позиций материалистического понимания истории и материалистической диалектики с учетом социокультурной обусловленности этого процесса. Однако в западной философии и методологии науки XX в. фактически - особенно в годы «триумфального шествия» логического позитивизма (а у него действительно были немалые успехи) - научное знание исследовалось без учета его ...
... имеют ни малейшего понятия о содержании такой политики. Конфликтность отражает степень абсурдности политики. Политика большевиков и была абсурдной, что подтверждает гражданская война. Противниками цивилизованного общества являются различные девианты, поляризаторы, которые привержены архаичным стереотипам и надуманным парадигмам. Цивилизованное общество в принципе не может иметь противников по ...
0 комментариев