1.1 Основные положения
Свойства интерферометров с дифракционной решеткой в первую очередь определяются характеристиками решетки. Под решеткой обычно понимают периодическую структуру, состоящую из системы прозрачных или отражающих штрихов, вносящих амплитудные, фазовые или в общем случае амплитудно-фазовые изменения в проходящую через них световую волну. Как правило, штрихи прямолинейны и параллельны между собой, однако находят применение интерферометры, в которых решетка представляет собой систему концентрических окружностей.
Основной характеристикой решетки является ее период d-расстояние между аналогичными линиями штрихов, измеренное в направлении, перпендикулярном штрихам. Иногда в качестве характеристики используют частоту - величину, обратную периоду. Второй характеристикой является форма штриха, определяющая зависимость величины амплитудно-фазовых изменений, вносимых решеткой в световой поток, от координаты, перпендикулярной штрихам. Как правило, используют решетки с простой формой штриха - трапецеидальной, синусоидальной, прямоугольной, треугольной.
Период дифракционных решеток изменяется в широких пределах от 10 до 104 штрихов на 1 мм, но для целей интерферометрии чаще всего используют решетки с малой частотой штриха - от 10 до 102 штрихов на 1 мм.
Как известно, после взаимодействия света с дифракционной решеткой пучок параллельных световых лучей разбивается на серию отдельных пучков - дифракционных максимумов. Направление распространения этих пучков определяется из соотношения
sina - sinb = Nl/d, (3.1)
где a и b - соответственно углы, составляемые направлениями распространения идущего от решетки и падающих на решетку световых потоков и нормалью к ней; N - порядковый номер дифракционного максимума, N=0, ±1, ±2, ...; l - длина световой волны.
Если первоначальный пучок света падает нормально к решетке, то вместо равенства (3.1) имеем
sina = Nl/d. (3.2)
При сравнительно грубых решетках, когда углы дифракции малы, равенства (3.1) и (3.2) принимают вид
(3.3)
(3.4)
Так как для большинства схем интерферометров N = 0; 1 или 2, а частота штрихов не превышает 100 штрихов на 1 мм, то почти всегда следует пользоваться равенствами (3.3) и (3.4).
Одна из распространенных оптических схем, на примере которой удобно описать явления, происходящие в интерферометрах с дифракционной решеткой, дана на рис. 3.1.
Источник света И находится в фокальной плоскости основного объектива О1 осветительной части прибора. Часто вместо источника, устанавливаемого непосредственно в фокальной плоскости, применяют систему конденсорных объективов и в качестве источника используют промежуточное изображение светящегося тела. Это удобно, так как промежуточное изображение легко ограничить диафрагмами нужной формы и тем самым удовлетворить требованиям, предъявляемым к источнику света с точки зрения необходимости ограничения его размеров в одном или двух направлениях. Чаще всего такими диафрагмами являются щель или осветительная дифракционная решетка. Из объектива О1 выходит коллимированный пучок света, который проходит через исследуемую неоднородность Н. В плоскости предметов интерферометра, где расположена Н, устанавливают также и диафрагму Д, выделяющую в поле прибора рабочий участок и поле волны сравнения. В практических условиях иногда невозможно поставить Д в плоскость предметов. В этих случаях отступают от идеальной схемы и помещают диафрагму поля предметов Д между неоднородностью и объективом О2. Так как в пространстве О1 и О2 световой пучок коллимирован, то, как правило, такое отступление не приводит к существенному изменению интерференционной картины. За плоскостью предметов устанавливают О2 - основной объектив приемной части прибора, размер которого выбирают так, чтобы его оправа не ограничивалась ни одной из интерферирующих волн. Вблизи от F - второй фокальной плоскости объектива О2 установлена дифракционная решетка R. За решеткой располагается плоскость экрана Э, который устанавливают в том месте, где находится изображение неоднородности Н. При использовании результатов экспериментов необходимо умножить все линейные размеры изображения на масштаб.
На экране наблюдается серия изображений, не закрытых непрозрачными зонами диафрагмы Д участок плоскости предметов, каждое из которых оборудовано светом одного из дифракционных максимумов. Эти изображения сдвинуты относительно нулевого, не сдвинутого изображения, на величину
(3.5)
где m - масштаб изображения; f — фокусное расстояние объектива О2; s - расстояние от плоскости предметов до первой главной плоскости объектива О2.
Расстояние между изображениями различных порядков
(3.6)
Для того чтобы рабочая волна и волна сравнения полностью накладывались одна на другую, необходимо, чтобы величина сдвига равнялась расстоянию b между изображениями отверстий диафрагмы. Это достигается при
(3.7)
Как правило, величины s и f одного порядка, а D значительно меньше, чем каждая из них. Это позволяет пренебречь вторым членом в квадратных скобках выражений (3.5) - (3.7) и записать их в упрощенном виде:
Практически, если в качестве основы прибора используется теневой прибор ИАБ-458, имеющий световой диаметр основных объективов 230 мм и f=1918 мм, то при l=5,25.10-4 мм и интерференции +1 и -1 максимумов для b=60 мм необходимо иметь решетку с частотой 30 штрихов на 1 мм. При интерференции нулевого и первого максимумов можно для рабочего участка использовать половину поля прибора, и для b=100 мм необходимо взять решетку с частотой 100 штрихов на 1 мм.
... датчика и осциллографа. Экспериментальные кривые зависимости времени τ горения частиц от давления p, соответствуют теоретической зависимости. Представляют интерес экспериментальные исследования процесса горения отдельной угольной частицы, движущейся в потоке газа. Такого рода опыты проводили Н. И. Сыромятников и 3.И.Леонтьева. После воспламенения частицы наблюдалось замедление скорости ее ...
... пластмасс различного назначения. Приводимый ниже материал предназначен для студентов химического отделения, специализирующихся по органической химии и химии и физике высокомолекулярных соединений, а также может быть полезен аспирантам, инженерам и научным работникам. 2.1 Метод изучения релаксации напряжения Явление релаксации - это процесс перехода из неравновесного в равновесное состояние ...
... к решению соответствующего интегрального уравнения, при этом могут быть использованы численные методы - аналитические зависимости в этом случае получить не удается. Еще сложнее описать процессы испарения и конденсации частиц, в среде, состоящей из нескольких летучих компонентов [23]. Предполагалось, что процесс стационарный, испаряющиеся компоненты химически инертны, пары представляют собой ...
... для анализа и проверки существующих теорий о процессах, протекающих в пламени, а также для развития и построения новых теорий. Таким образом, целью настоящей работы является изучение существующих методик диагностики пламен и их применения для исследования различных характеристик пламен. Феноменология пламени. Процесс горения веществ – эта сложная быстропротекающая экзотермическая реакция ...
0 комментариев