1.3. Основные принципы расчета критериев для проверки статистических гипотез

Проверка каждого типа статистических гипотез осуществляется с помощью соответствующего критерия, являющегося наиболее мощным для в каждом конкретном случае. Например, проверка гипотезы о виде закона распределения случайной величины может быть осуществлена с помощью критерия согласия Пирсона 2; проверка гипотезы о равенстве неизвестных значений дисперсий двух генеральных совокупностей - с помощью критерия Фишера F; ряд гипотез о неизвестных значениях параметров генеральных совокупностей проверяется с помощью критерия Z - нормальной распределенной случайной величины и критерия t-Стьюдента и т. д.

Значение критерия, рассчитываемое по специальным правилам на основании выборочных данных, называется наблюдаемым значением критерия (Кнабл.).

Значения критерия, разделяющие совокупность значений критерия на область допустимых значений (наиболее правдоподобных в отношении нулевой гипотезы Н0) и критическую область (область значений, менее правдоподобных в отношении нулевой гипотезы Н0), определяемые на заданном уровне значимости а по таблицам распределения случайной величины К, выбранной в качестве критерия, называются критическими точками (Ккр).

Областью допустимых значений (областью принятия нулевой гипотезы Н0) называют совокупность значений критерия К, при которых нулевая гипотеза Н0 не отклоняется.

Критической областью называют совокупность значений критерия К, при которых нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.

Различают одностороннюю (правостороннюю или левостороннюю) и двустороннюю критические области.

Если конкурирующая гипотеза - правосторонняя, например, Н1: а > а0, то и критическая область правосторонняя (рисунок 1). При правосторонней конкурирующей гипотезе критическая точка (К кр.п) принимает положительные значения.

Рисунок 1

Если конкурирующая гипотеза - левосторонняя, например, Н1: а < а0, то и критическая область - левосторонняя (рисунок 2). При левосторонней конкурирующей гипотезе критическая точка принимает отрицательные значения (Ккр.л).

Рисунок 2.

Если конкурирующая гипотеза - двусторонняя, например, Н1: а=а0, то и критическая область - двусторонняя (рисунок 3). При двусторонней конкурирующей гипотезе определяются 2 критические точки (Ккр.л и Ккр.п).


Рисунок 3

Основной принцип проверки статистических гипотез состоит в следующем:

- если наблюдаемое значение критерия (Кнабл) принадлежит критической области, то нулевая гипотеза Н0 отклоняется в пользу конкурирующей;

- если наблюдаемое значение критерия (Кнабл) принадлежит области допустимых значений, то нулевую гипотезу Н0 нельзя отклонить.

Можно принять решение относительно нулевой гипотезы Н0 путем сравнения наблюдаемого (Кнабл) и критического значений критерия (Ккр).

При правосторонней конкурирующей гипотезе:

- если Кнабл < Ккр, то нулевую гипотезу Н0 нельзя отклонить;

- если Кнабл > Ккр, то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.

При левосторонней конкурирующей гипотезе:

- если Кнабл >- Ккр, то нулевую гипотезу Н0 нельзя отклонить;

- если Кнабл < - Ккр, то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.

При двусторонней конкурирующей гипотезе:

- если - Ккр < Кнабл < Ккр, то нулевую гипотезу Н0 нельзя отклонить;

- если Кнабл > Ккр или Кнабл < -Ккр, то нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1.

Алгоритм проверки статистических гипотез сводится к следующему:

 1) сформулировать нулевую Н0 и альтернативную Н1 гипотезы;

2) выбрать уровень значимости ;

3) в соответствии с видом выдвигаемой нулевой гипотезы Н0 выбрать статистический критерий для ее проверки, т.е. - специально подобранную случайную величину К точное или приближенное распределение которой заранее известно;

4) по таблицам распределения случайной величины К, выбранной в качестве статистического критерия, найти критическое значение К (критическую точку или точки);

5) на основании выборочных данных по специальному алгоритму вычислить наблюдаемое значение критерия Кнабл;

6) по виду конкурирующей гипотезы Н1 определить тип критической области;

7) определить, в какую область (допустимых значений или критическую) попадает наблюдаемое значение критерия Кнабл, и в зависимости от этого -принять решение относительно нулевой гипотезы Н0.

Следует заметить, что даже в том случае, если нулевую гипотезу Н0 нельзя отклонить, это не означает, что высказанное предположение о генеральной совокупности является единственно подходящим: просто ему не противоречат имеющиеся выборочные данные, однако таким же свойством наряду с высказанной могут обладать и другие гипотезы.

Можно интерпретировать результаты проверки нулевой гипотезы следующим образом:

- если в результате проверки нулевую гипотезу Н0 нельзя отклонить, то это означает, что имеющиеся выборочные данные не позволяют с достаточной уверенностью отклонить нулевую гипотезу Н0, вероятность нулевой гипотезы Н0 больше, а конкурирующей Н1 – меньше 1 - ;

- если в результате проверки нулевая гипотеза Н0 отклоняется в пользу конкурирующей Н1, то имеющиеся выборочные данные не позволяют с достаточной уверенностью принять нулевую гипотезу Н0, вероятность нулевой гипотезы Н0 меньше, а конкурирующей Н1 – больше 1 -.


Глава 2. Проверка различных типов статистических гипотез

 


Информация о работе «Процесс и критерии проверки статистических гипотез»
Раздел: Экономика
Количество знаков с пробелами: 57287
Количество таблиц: 7
Количество изображений: 9

Похожие работы

Скачать
37952
23
9

... как c2.набл.> c2.кр., то мнения экспертов согласованны.  åаij  0  10    20      30 X  X3 X1 X2 X5 X4 X6 Рис.2. Ранжировочная гистограмма.   8. Уравнение линейной регрессии. Коэффициент корреляции. Проверка гипотезы о значимости коэффициента корреляции После отсеивания незначимых факторов проверяется наличие корреляционных связей между факторами и между факторами ...

Скачать
94210
3
0

... данных и по внедрению накопленного арсенала современных методов прикладной статистики. По нашему мнению, широкого внедрения заслуживают, в частности, методы многомерного статистического анализа, планирования эксперимента, статистики объектов нечисловой природы. Очевидно, рассматриваемые работы должны быть плановыми, организационно оформленными, проводиться мощными самостоятельными организациями и ...

Скачать
71569
0
3

... гипотезу. Вроде бы это надо делать так:     Теперь результаты наблюдений над выручкой G можно представить в виде четырех наблюдений над U: –11,+1,+3,+7. Теория математической статистики предлагает следующий, т.н. биномиальный критерий проверки гипотез в подобных ситуациях. Предполагается, что распределение вероятностей наблюдаемой величины U симметрично относительно значения математического ...

Скачать
69385
2
3

... исходить из вида обрабатываемых данных. В соответствии с современными воззрениями делим эконометрику и прикладную статистику на четыре области: - статистика случайных величин (одномерная статистика); - многомерный статистический анализ; - статистика временных рядов и случайных величин; - статистика объектов нечисловой природы. В первой области элемент выборки - число, во второй - вектор, в ...

0 комментариев


Наверх