3. Шкалы измерений

Существует четыре основные шкалы измерений.

3.1. Шкала наименований

Собственно измерений, отвечающих определению этого действия, в шкале наименований не производится. Здесь речь идёт о группировке объектов, идентичных по определённому признаку, и о присвоении им обозначений. Не случайно, что другое название этой шкалы – номинальное (от латинского слова Nome – имя).

Обозначениями, присваиваемыми объектам, являются числа. Например, легкоатлеты-прыгуны в длину в этой шкале могут обозначаться номером 1, прыгуны в высоту – 2, прыгуны тройным – 3, прыгуны с шестом – 4.

При номинальных измерениях вводимая символика означает, что объект 1 только отличается от объектов 2, 3 или 4. Однако насколько отличается и в чём именно, по этой шкале измерить нельзя.

Каков же смысл в присвоении конкретным объектам (например, прыгунам) чисел? Делают это потому, что результаты измерений нужно обрабатывать. Математическая статистика, аппарат которой используется для этого, имеет дело с числами, и группировать объекты лучше не по словесным характеристикам, а по числам.

3.2. Шкала порядка

Если какие-то объекты обладают определённым качеством, то порядковые измерения позволяют ответить на вопрос о различиях в этом качестве. Например, соревнования в беге на 100 м – это определение уровня развития скоростно-силовых качеств. У спортсмена, выигравшего забег, уровень этих качеств в данный момент выше, чем у пришедшего вторым. У второго, в свою очередь, выше, чем у третьего, и т. д.

Но чаще всего шкала порядка используется там, где невозможны качественные измерения в принятой системе единиц. Например, в художественной гимнастике нужно измерить артистизм разных спортсменок. Тогда он устанавливается в виде рангов: ранг победителя – 1, второе место – 2 и т. д.

При использовании этой шкалы можно складывать и вычитать ранги и производить над ними какие-либо другие математические действия. Однако необходимо помнить, что если между второй и четвёртой спортсменками два ранга, то это вовсе не означает, что вторая вдвое артистичнее первой.

3. 3. Шкала интервалов

Измерения в этой шкале не только упорядочены по рангу, но и разделены определёнными интервалами. В интервальной шкале установлены единицы измерения (градус, секунда, и т. д.). Измеряемому объекту здесь присваивается число, равное количеству единиц измерения, которое он содержит. Например, температура тела спортсмена А. во время выполнения упражнения оказалась равной 39,0* С, спортсмена В. -39,5* С.

Обработка результатов измерений в интервальной шкале позволяет определить, «на сколько больше» один объект по сравнению с другим (в приведённом выше примере=0,5*). Здесь можно использовать любые методы статистики, кроме определения отношений. Связано это с тем, что нулевая точка этой шкалы выбирается произвольно.

3. 4. Шкала отношений

В шкале отношений нулевая точка не произвольна, и, следовательно, в некоторый момент времени измеряемое количество может быть равно нулю.

В этой шкале какая-нибудь из единиц измерения принимается за эталон, а измеряемая величина содержит столько этих единиц, во сколько раз она больше эталона. Так, сила в 600 Н, равная 6,6.с, во столько же раз больше основной единицы измерения – одного ньютона. Результаты измерений в этой шкале могут обрабатываться любыми методами математической статистики.

Таблица «Характеристики и примеры шкал измерений»

(по Дж. Гласу, Дж. Стэнли)

Шкала Характеристики Математические методы Примеры
Наименований Объекты сгруппированы, а группы обозначены номерами. То, что номер одной группы больше или меньше другой, ещё ничего не говорит об их свойствах, за исключением того, что они различаются

Число случаев

Мода

Тетрахорические и полихорические коэффициенты корреляции

Номер спортсмена

Амплуа

Порядка Числа, присвоенные объектам, отражают количество свойства, принадлежащего им. Возможно установление соотношения «больше» или «меньше»

Медиана

Ранговая корреляция

Ранговые критерии

Проверка гипотез непараметрической статистикой

Результаты ранжирования спортсменов в тесте
Интервалов Есть единица измерений, при помощи которой объекты можно упорядочить, приписать им числа так, чтобы равные разностиотражали разные различия в количестве измеряемого свойства Все методы статистики, кроме определения отношений

Температура тела

Суставные углы

Отношений Отношение чисел, присвоенных объектам после измерений, отражают количественные отношения измеряемого свойства Все методы статистики

Длина тела

Масса тела

Сила движений

Ускорение


Информация о работе «Основы теории измерений»
Раздел: Физкультура и спорт
Количество знаков с пробелами: 17982
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
25800
1
0

... В частности, мы разрабатываем Автоматизированное Рабочее Место “Математика для экспертизы” (АРМ МАТЭК) специалиста по проведению экспертных исследований [38]. Подводя итоги, можно сказать, что репрезентативная теория измерений (или репрезентационная, как предпочитает писать Ю.Н.Толстова) в состоянии дать рекомендации по выбору методов анализа статистических данных, измеренных в тех или иных ...

Скачать
29770
1
0

... меняться при допустимом преобразовании шкалы измерения этих данных. Другими словами, выводы должны быть инвариантны по отношению к допустимым преобразованиям шкалы. Таким образом, одна из основных целей теории измерений - борьба с субъективизмом исследователя при приписывании численных значений реальным объектам. Так, расстояния можно измерять в аршинах, метрах, микронах, милях, парсеках и ...

Скачать
18840
4
8

евает применение к результатам наблюдений методов теории вероятностей и математической статистики для выводов об истинных значениях искомых величин. Измерения проводятся с помощью технических средств измерений. Погрешности средств измерений - отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие т. н. ...

Скачать
318063
13
95

... , при обработке металлов давлением. Экспериментальные исследования процессов пластической деформации металла в зоне формирования соединения при контактной точечной сварке по этой методике проводятся на натурных образцах с предварительно нанесенной координатной сеткой, технология изготовления которых предложена и описана в работе [128]. При исследованиях пластических деформаций в плоскостях ...

0 комментариев


Наверх