2.2. О возможных альтернативах ПЭ

Отмеченное противоречие между ПЭ и законом сохранения энергии носит принципиальный характер; одновременно удовлетворить оба этих положения не удается. Для уступок со стороны закона сохранения ради сохранения ПЭ не видится разумных оснований. Модификация ПЭ, по видимому, также невозможна, так как неизбежно сопряжена с отказом от ключевой “эквивалентности”. В сложившейся ситуации не представляется иного, кроме поиска альтернативы ПЭ, удовлетворительной с позиции законов сохранения.

Требование равенства энергий Е1 и Е2 может быть удовлетворено, в частности, введением следующего ограничения: кинетической энергии тела соответствует нулевая гравитационная масса (то есть на кинетическую составляющую массы mkin гравитационное поле вообще не действует). Тогда сила гравитационной природы будет одинаково проявлять себя и в одном, и в другом случае, действуя лишь на “массу покоя” m0. Но в таком случае проблемы возникают с представлениями о существе “массы покоя” и “кинетической массы” как принципиально различных форм масс. Уже на уровне постановки вопроса ощущается его ущербность. Масса покоя имеется и у “статичных” макротел, и у структур с ярко выраженной динамикой: раскаленной газовой туманности, ансамбля микрочастиц и каждой микрочастицы в отдельности. Пытаться на этом пути искать “общий знаменатель” для того, чтобы игнорировать участие кинетической массы в гравитационном взаимодействии, по видимому, бесперспективно.

Обратим все же внимание на то, что в рассмотренном нами мысленном эксперименте фигурирует лишь одна кинетическая составляющая массы - продольная mkin
(mkin = Ekin/c2), возникающая при движении тела параллельно вектору напряженности гравитационного поля. В данном мысленном эксперименте изначально отсутствует поперечная кинетическая составляющая массы, потому пока мы не можем сразу оценить степень её участия в гравитационном взаимодействии. Но энергетическая составляющая Ekin и соответствующая ей mkin появляются в процессе действия гравитационного поля как результат влияния поля, являясь, таким образом, его продуктом. Поэтому вполне оправданным выглядело бы решение исключить действие гравитационных сил на результат своего же влияния, то есть избавиться от фактора двойного учета поля на тело. После такого исключения отмеченный конфликт с законом сохранения энергии устраняется: как при свободном падении тела, так и при его медленном опускании выделяется одинаковая энергия, т. е. E1 = E2 .

Для более подробного рассмотрения особенностей гравитационного взаимодействия и учета природы mkin принципиально важны соображения, изложенные в работе 7. Обратимся к некоторым из них. Особенность гравитационного взаимодействия, как отмечено в [7], состоит в том, что под действием силы гравитационной природы прироста полной энергии пробного тела не происходит (т.е. полная энергия свободно падающего (и не излучающего!) пробного тела не меняется, оставаясь равной полной начальной энергии; перераспределяется лишь соотношение между его энергетическими компонентами). Если в самом начале движения полная энергия пробного тела соответствовала его массе покоя, то по мере разгона все большая её часть соответствует уже кинетической составляющей массы mkin, которая появляется за счет уменьшения массы покоя m0 7 . В этой особенности гравитационного действия заключены истоки принципиального различия между силами гравитации и инерции. Свойство инерции проявляет себя при непосредственном взаимодействии тел между собой, в результате чего любое тело, в зависимости от особенности взаимодействия и выбора системы отсчета наблюдателем, может как получить дополнительную кинетическую энергию, либо утратить имеющуюся, передав её другим телам. Силы гравитационной природы способны перераспределять энергию из одного вида в другой в пределах данного тела: энергию покоя, внутреннюю энергию, поперечную кинетическую составляющую энергии - в продольную кинетическую энергетическую составляющую. В соответствии с перераспределением составляющих энергии изменяется импульс тела.

Величина mkin, оказываясь продуктом действия гравитационного поля, увеличивает инерцию тела в направлении падения, но сама уже не подвержена влиянию гравитационного поля. Поле само по себе не в состоянии различить, является ли mkin продуктом его действия, или результатом действия силы иной природы. Поэтому, независимо от происхождения mkin, вполне резонно предположение, что на эту составляющую гравитационное поле влияния не оказывает.

При ощутимой относительной доле продольной кинетической составляющей величина ускорения g будет отставать от напряженности гравитационного поля g. Сила, действующая на вертикально падающее тело в g-поле, пропорциональна его массе покоя и составляет m0g. Но реальное ускорение тела g определяется отношением действующей силы к его полной инертной массе, равной m , откуда
g = g m0 / m .  

Энергия, переносимая фотоном, определяется исключительно его кинетической энергией. Она может быть передана при непосредственном взаимодействии, что указывает на наличие у фотона инертных свойств и соответственно инертной массы. Гравитационная масса фотона не является постоянной величиной. В случае вертикально ориентированного свободного фотона (движение фотона параллельно вектору напряженности g-поля) g-поле на фотон не действует: гравитационная масса фотона равна нулю; массы покоя фотон также не имеет. Отсюда наблюдаемое “посинение” или “покраснение” фотона имеет своей причиной различный ход времени в системах “верхнего” и “нижнего” наблюдателей.

В связи с высказанными выше соображениями не будет излишним проявлять осторожность в выражении соответствия между массой объекта и полной его энергией. Не всякой энергетической составляющей соответствует гравитационная масса; возможно также, что в определенных случаях инертные свойства могут не соответствовать в точности их энергетическому потенциалу. Гравитационная масса объекта по отношению к любому другому гравитирующему объекту определяется сугубо индивидуально.


Информация о работе «Принцип эквивалентности и законы сохранения»
Раздел: Наука и техника
Количество знаков с пробелами: 32631
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
9667
0
0

... и какая – действительными гравитационными силами. Он вообще не обнаружил никаких сил, если только на лифт не подействуют какие-либо другие (т.е. отличные от гравитационных0 силы. Постулированный принцип эквивалентности требует, в частности, чтобы отношение инертных масс к гравитационным удовлетворяло тождеству Мин/Мгр = 1 «Невесомость» человека в спутнике на орбите является следствием ...

Скачать
41956
0
0

... о невероятных ухищрениях человеческого ума. Первый до сих пор известный достоверный документ об "осуществлении" идеи вечного двигателя относится к XIII веку. Еще до установления закона сохранения энергии в 1775 году было сделано заявление французской Академии, в котором говорилось о невозможности создания вечного двигателя. Вследствие чего Академия отказывалась принимать впредь подобные проекты ...

Скачать
26899
0
0

... оно было бы совершенно бесполезно по отношению к другим объектам, предлагаемым обычно творцами вечного движения..» Здесь (правда, применительно только к механическому движению) закон сохранения «силы» и вытекающая из него невозможность вечного двигателя первого рода выражены совершенно четко. И далее: «...Такой способ исследования, несомненно, дорого обходится; он уже разрушил много семей. Часты ...

Скачать
139918
15
0

... ходе теоретического исследования при сопоставлении множества оригиналов с их переводами.[14,15] Таким образом, стихотворный перевод подчиняется общей методологической основе теории художественного перевода, на которой строится творчество переводчика - сохранение существенного и эквивалентная замена каких-либо элементов в соответствии с художественной действительностью подлинника. [23] Как ...

0 комментариев


Наверх