7. Реализованные алгоритмы

В библиотеке AGraph реализованы алгоритмы решения многих теоретико-графовых задач, в том числе:

поиск путей с минимальным количеством промежуточных вершин между заданными вершинами графа; поиск путей минимальной длины во взвешенном графе; определение связности графа; определение отношения ребра к кольцевым системам; нахождение компонент связности графа; нахождение сильных компонент ориентированного графа; построение матрицы связности и обобщенной матрицы связности графа; построение матрицы достижимости графа; построение матрицы расстояний графа; поиск максимальных независимых множеств вершин графа; поиск системы независимых минимальных колец графа (исключая петли), покрывающих все кольцевые ребра графа; построение графа, дополнительного к заданному графу; построение реберного графа для заданного графа; построение кратчайшего остовного дерева для заданного взвешенного графа; поиск максимального потока в транспортной сети; поиск хроматического числа и оптимальной вершинной раскраски графа; поиск эйлерова цикла в графе; поиск гамильтоновых циклов в орграфе; решение задачи почтальона для взвешенного графа с неотрицательными весами ребер; определение планарности графа; распознавание изоморфизма графов с учетом атрибутов.

В качестве источников алгоритмов использовались монографии и статьи по теории графов. При решении задач, для которых известны алгоритмы полиномиальной сложности, использовались, в основном, алгоритмы, которые являются асимптотически оптимальными среди всех известных алгоритмов решения данной задачи, или близки к оптимальным. Для некоторых из задач, решаемых библиотекой, алгоритмы полиномиальной сложности не существуют или неизвестны. В таком случае приходится использовать переборные алгоритмы, приближенные алгоритмы или алгоритмы, обеспечивающие эффективное решение для частных случаев задачи. Библиотека AGraph предоставляет ряд алгоритмов, которые относятся ко второй и третьей из этих категорий (например, приближенный алгоритм вершинной раскраски графов). В то же время, основное внимание в библиотеке уделялось реализации универсальных алгоритмов. Для некоторых "трудных" задач переборные алгоритмы были реализованы самостоятельно; для решения других в библиотеку были перенесены наиболее эффективные программные реализации, которые удалось найти (разумеется, в том случае, когда авторы программ допускают такое использование). Так, функция распознавания изоморфизма графов основана на программе, разработанной М.Венто [5]; функция нахождения хроматического числа и оптимальной вершинной раскраски графа основана на программе, разработанной М.Триком [6].

Важнейшей проблемой при разработке программного обеспечения является обеспечение его корректности. Необходимой составляющей для достижения корректности является использование корректных алгоритмов, однако правильная и эффективная реализация алгоритмов также является нетривиальной задачей. При создании библиотеки AGraph принимались различные меры для обнаружения и исправления ошибок. Во-первых, в отладочном режиме методы классов библиотек AGraph и Vectors выполняют проверки предусловий и правильности передаваемых параметров; в случае обнаружения ошибки возбуждается исключительная ситуация (exception). Во-вторых, все изменения активно тестируются как в ручном, так и в автоматическом режиме, для чего были созданы соответствующие программные тесты. Разумеется, все эти методы не гарантируют отсутствие ошибок, однако их использование позволило значительно повысить надежность библиотеки.

С технологической точки зрения алгоритмы можно разделить на две категории: первые из них реализованы в виде методов класса TGraph (модуль graphs.pas), вторые - в отдельных модулях. Реализация алгоритмов в модуле graphs.pas позволяет достичь максимальной эффективности за счет доступа к деталям внутреннего представления графа (т.е. к защищенным полям и методам классов TVertex, TEdge и TGraph), поэтому таким способом реализованы, в основном, "базовые" алгоритмы: поиск путей, определение компонент связности графа и т.д.

8. Ввод/вывод графов

Одной из проблем при создании средств работы с помеченными графами является выбор внешнего файлового формата для хранения графов. До недавнего времени каждая программная система использовала свой собственный, уникальный формат, что приводило к сложностям при организации обмена данными. Относительно недавно разработчики системы Graphlet предложили универсальный переносимый формат файла для представления помеченных графов - GML (Graph Modelling Language) [7]. В настоящее время GML-формат поддерживается многими прикладными программами и библиотеками для работы с графами.

GML-файл состоит из пар ключ-значение. Примерами ключей являются стандартные ключи graph, node и edge. Значениями могут быть целые и вещественные числа, строки и списки; в свою очередь, списки также содержат пары ключ-значение, в том числе вложенные списки. Важным достоинством формата GML является его открытость и расширяемость: любой разработчик имеет право определять свои ключи для хранения необходимой информации. В настоящее время этот формат поддерживается многими прикладными программами и библиотеками для работы с графами. Библиотека AGraph также поддерживает запись и чтение графов в GML-формате, но с некоторыми ограничениями (для хранения строк не используется кодировка ISO 8859).

Наряду с форматом GML, библиотека поддерживает запись графов в поток и чтение их из потока с использованием двоичного формата (методы TGraph.WriteToStream и TGraph.ReadFromStream). Данный способ обеспечивает более высокую скорость записи/чтения графов и приводит к созданию файлов меньшего размера, однако не является переносимым.


Информация о работе «AGraph: библиотека классов для работы с помеченными графами»
Раздел: Информатика, программирование
Количество знаков с пробелами: 55932
Количество таблиц: 2
Количество изображений: 0

0 комментариев


Наверх