Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине

9208
знаков
0
таблиц
4
изображения

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважинеМинистерство общего и профессионального образования РФ

Тюменский Государственный Нефтегазовый Университет

Кафедра РЭНиГМ

Реферат

«Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине»

Выполнил студент

Группы НГР-96-1

Принял профессор

Телков А. П.

Тюмень 1999 г.
Рассмотрим функция (F) которая есть функ­ция пяти параметров F=F (f0, rc, h, x, t*), каждый из которых — безразмерная ве­личина, соответственно равная

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважинеАнализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважинеАнализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважинеАнализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (1)

где r — радиус наблюдения;

x — коэффициент пьезопроводности;

Т — полное время наблюдения;

h — мощность пласта;

b — мощность вскрытого пласта;

z — координата;

t — текущее время.

Названная функция может быть ис­пользована для определения понижения (повышения) давления на забое скважи­ны после ее пуска (остановки), а также для анализа распределения потенциала (давления) в пласте во время работы скважины.

Уравнение, описывающее изменение давления на забое, т. е. при x=h; r=rc или r=rc, имеет вид

 Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (2)

где безразмерное значение депрессии связано с размерным следующим соот­ношением

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине гдеАнализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (3)

здесь Q — дебит;

m — коэффициент вязкости;

k — коэффициент проницаемости.

Аналитическое выражение F для оп­ределения изменения давления на за­бое скважины запишем в виде

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (4)

Уравнение (2) в приведенном виде не может использоваться для решения инженерных задач по следующим при­чинам: во-первых, функция (4) сложна и требует табулирования; во-вторых, вид функции исключает возможность выделить время в качестве слагаемого и свести решение уравнения (2) к урав­нению прямой для интерпретации кри­вых восстановления (понижения) давле­ния в скважинах традиционными мето­дами. Чтобы избежать этого, можно по­ступить следующим образом.

В нефтепромысловом деле при гид­родинамических исследованиях скважин широко используется интегрально-пока­зательная функция. Несовершенство по степени вскрытия пласта в этом случае учитывается введением дополнительных фильтрационных сопротивлений (C1), взятых из решения задач для установившегося притока. В соответствии с этим уравнение притока записывается в виде

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (5)

Как видно, дополнительные фильтрационные сопротивления являются функ­цией геометрии пласта. Насколько вер­но допущение о возможности использо­вания значений C1(rс, h), пока еще ни теоретически, ни экспериментально не доказано.

Для неустановившегося притока урав­нение (2) запишем аналогично в виде двух слагаемых, где в отличие от вы­ражения (5) значения фильтрационных сопротивлений являются функцией трех параметров (rс, h, f0)

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (6)

Как _ видим, дополнительное слагае­мое R(rc , h, f0) в уравнении (6) зависит не только от геометрии пласта, но и от параметра Фурье (f0). В дальнейшем бу­дем называть это слагаемое функцией фильтрационного сопротивления. Заме­тим, что при h=l (скважина совершен­ная по степени вскрытия) уравнение (2) представляет собой интегрально-по­казательную функцию

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (7)

С учетом равенства (7) решение (6) за­пишем в виде

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (8)

Разрешая уравнение (8) относительно функции сопротивления и учитывая уравнение (2), находим

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (9)

и на основании равенства (7) приведем выражение (9) к виду

Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине (10)

Численное значение R(rс,h,fo) рас­считано по уравнению (10) на ЭВМ в широком диапазоне изменения парамет­ров rc, h, f0. Интеграл (2) вычислялся методом Гаусса, оценка его сходимости выполнена согласно работе [3]. С уче­том равенства (7) вычисления дополнительно проконтролированы по значени­ям интегрально-показательной функции.

С целью выяснения поведения депрессии и функции сопротивления проана­лизируем их зависимость от значений безразмерных параметров.


Информация о работе «Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине»
Раздел: География
Количество знаков с пробелами: 9208
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
5259
0
13

... . Насколько вер­но допущение о возможности использо­вания значений C1(rс, h), пока еще ни теоретически, ни экспериментально не доказано. Для неустановившегося притока урав­нение (2) запишем аналогично в виде двух слагаемых, где в отличие от вы­ражения (5) значения фильтрационных сопротивлений являются функцией трех параметров (rс, h, f0) (6) Как _ видим, дополнительное слагае­мое R(rc , h, ...

Скачать
10321
0
6

... , и ее численное значение при любом вскрытии пласта всегда меньше численного значения С1(rc, h) при установившемся притоке. 3. Полученное аналитическое решение для неустановившегося притока сжимаемой жидкости (газа) к несовершенной скважине в бесконечном по протяженности пласте преобразовано в прямолинейную анаморфозу, которая позволяет эффективно интерпретировать кривые восстановления забойного ...

Скачать
108163
13
4

... , интересных с точки зрения нефтенасыщенности, в разрезе скважины нет. В связи с тем, что расстояние до нефтесборной сети более 5км., скважина подлежит консервации. Пример проведения гидродинамических исследований Скважина № 1478 Приразломного месторождение Интервал испытания: 2716-2753,6 м Дата испытания: 17 ноября 1995 г Пласт БС16-18 Условия испытания: Испытание проведено в обсаженном ...

Скачать
39827
3
4

... в 22 скважинах, нижняя – в 44 скважинах. Остальные эксплуатируют верхнюю и нижнюю части одновременно. В настоящее время на Ямсовейском газоконденсатном месторождении находятся в эксплуатации четыре газоконденсатных скважины, пробуренные на ачимовские отложения. Были проведены исследования физико-химических свойств газового конденсата и дана его оценка как углеводородного сырья для производства ...

0 комментариев


Наверх