Министерство общего и профессионального образования РФ

Тюменский Государственный Нефтегазовый Университет

Кафедра РЭНиГМ

 

Реферат

“Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине”

Тюмень 1999 г.

Рассмотрим функция (F) которая есть функция пяти параметров F=F (f0, rc, h, x , t*), каждый из которых — безразмерная величина, соответственно равная

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважинеФункция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважинеФункция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважинеФункция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважинеФункция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (1)

где r — радиус наблюдения;

x — коэффициент пьезопроводности;

Т — полное время наблюдения;

h — мощность пласта;

b — мощность вскрытого пласта;

z — координата;

t — текущее время.

Названная функция может быть использована для определения понижения (повышения) давления на забое скважины после ее пуска (остановки), а также для анализа распределения потенциала (давления) в пласте во время работы скважины.

Уравнение, описывающее изменение давления на забое, т. е. при x =h; r=rc или r=rc, имеет вид

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (2)

где безразмерное значение депрессии связано с размерным следующим соотношением

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине гдеФункция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (3)

здесь Q — дебит;

m — коэффициент вязкости;

k — коэффициент проницаемости.

Аналитическое выражение F для определения изменения давления на забое скважины запишем в виде

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (4)

Уравнение (2) в приведенном виде не может использоваться для решения инженерных задач по следующим причинам: во-первых, функция (4) сложна и требует табулирования; во-вторых, вид функции исключает возможность выделить время в качестве слагаемого и свести решение уравнения (2) к уравнению прямой для интерпретации кривых восстановления (понижения) давления в скважинах традиционными методами. Чтобы избежать этого, можно поступить следующим образом.

В нефтепромысловом деле при гидродинамических исследованиях скважин широко используется интегрально-показательная функция. Несовершенство по степени вскрытия пласта в этом случае учитывается введением дополнительных фильтрационных сопротивлений (C1), взятых из решения задач для установившегося притока. В соответствии с этим уравнение притока записывается в виде

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (5)

Как видно, дополнительные фильтрационные сопротивления являются функцией геометрии пласта. Насколько верно допущение о возможности использования значений C1(rс, h), пока еще ни теоретически, ни экспериментально не доказано.

Для неустановившегося притока уравнение (2) запишем аналогично в виде двух слагаемых, где в отличие от выражения (5) значения фильтрационных сопротивлений являются функцией трех параметров (rс, h, f0)

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (6)

Как _ видим, дополнительное слагаемое R(rc , h, f0) в уравнении (6) зависит не только от геометрии пласта, но и от параметра Фурье (f0). В дальнейшем будем называть это слагаемое функцией фильтрационного сопротивления. Заметим, что при h=l (скважина совершенная по степени вскрытия) уравнение (2) представляет собой интегрально-показательную функцию

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (7)

С учетом равенства (7) решение (6) запишем в виде

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (8)

Разрешая уравнение (8) относительно функции сопротивления и учитывая уравнение (2), находим

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (9)

и на основании равенства (7) приведем выражение (9) к виду

Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине (10)

Численное значение R(rс,h,fo) рассчитано по уравнению (10) на ЭВМ в широком диапазоне изменения параметров rc, h, f0. Интеграл (2) вычислялся методом Гаусса, оценка его сходимости выполнена согласно работе [3]. С учетом равенства (7) вычисления дополнительно проконтролированы по значениям интегрально-показательной функции.

С целью выяснения поведения депрессии и функции сопротивления проанализируем их зависимость от значений безразмерных параметров.


Информация о работе «Функция фильтрационного сопротивления в условиях неустановившегося притока жидкости (газа) к несовершенной скважине»
Раздел: География
Количество знаков с пробелами: 10321
Количество таблиц: 0
Количество изображений: 6

Похожие работы

Скачать
9208
0
4

... h)) для притока установившегося ре­жима. Рис. 2. Поведение относительной депрес­сии и относительной функции фильтрационного сопротивления (rc=0,0014, h=const, f0) при h, равных: 1,1'—0,1; 2,2'— 0,3; 3,3'—0,5; 4,4'—0,7; 5,5'— 0,9; 6,6'— 1,0. выводы 1. Депрессия на забое несовершенной по степени вскрытия скважины для всех rc < 0,01 имеет два явно выражен­ных закона изменения: а) нелинейный, ...

Скачать
5259
0
13

... . Насколько вер­но допущение о возможности использо­вания значений C1(rс, h), пока еще ни теоретически, ни экспериментально не доказано. Для неустановившегося притока урав­нение (2) запишем аналогично в виде двух слагаемых, где в отличие от вы­ражения (5) значения фильтрационных сопротивлений являются функцией трех параметров (rс, h, f0) (6) Как _ видим, дополнительное слагае­мое R(rc , h, ...

Скачать
108163
13
4

... , интересных с точки зрения нефтенасыщенности, в разрезе скважины нет. В связи с тем, что расстояние до нефтесборной сети более 5км., скважина подлежит консервации. Пример проведения гидродинамических исследований Скважина № 1478 Приразломного месторождение Интервал испытания: 2716-2753,6 м Дата испытания: 17 ноября 1995 г Пласт БС16-18 Условия испытания: Испытание проведено в обсаженном ...

Скачать
39827
3
4

... в 22 скважинах, нижняя – в 44 скважинах. Остальные эксплуатируют верхнюю и нижнюю части одновременно. В настоящее время на Ямсовейском газоконденсатном месторождении находятся в эксплуатации четыре газоконденсатных скважины, пробуренные на ачимовские отложения. Были проведены исследования физико-химических свойств газового конденсата и дана его оценка как углеводородного сырья для производства ...

0 комментариев


Наверх