3. УСТРОЙСТВО И ДЕЙСТВИЕ БОЕПРИПАСОВ, ПРИМЕНЯЕМЫХ К ТАНКОВЫМ ПУШКАМ И ОРУДИЯМ БМП
Боеприпасами (боевыми припасами) артиллерии называются предметы артиллерийского вооружения в виде устройств, действие которых основано, как правило, на использовании взрывчатых веществ.
Артвыстрел (артиллерийский выстрел) —вид боеприпаса, предназначенный для нанесения поражения противнику при стрельбе из орудий и выполнения других задач, состоит из снаряда со снаряжением и взрывателем, боевого заряда и вспомогательных элементов в гильзе и средства воспламенения его—капсюльной
втулки.
Артвыстрелы подразделяются на боевые, холостые, практические и учебные. Боевые артвыстрелы—основные, так как от них зависит ущерб, наносимый противнику. Правильное обращение с ними позволяет обеспечить безопасность в служебном обращении и безотказное, эффективное действие по целям на поле боя. Холостые артвыстрелы имеют специальный боевой заряд в укороченной гильзе без снаряда и служат для холостой стрельбы (имитации светового и звукового эффектов выстрела) во время учений и для салютов. Практические артвыстрелы имеют снаряды и взрыватели в инертном снаряжении и применяются для стрельбы на полигоне Учебные артвыстрелы не содержат ВВ и предназначены для изучения материальной части боеприпасов (преимущественно разрезные и легкоразборные), для обучения действию при вооружении и для проверок и регулировок вооружения. Учебные артвыстрелы, используемые для заряжания орудий, называют учебно-тренировочными или макетами.
Для орудий танков и БМП применяются артвыстрелы патронного (унитарные) и раздельного гильзового заряжания. В унитарных патронах снаряд, боевой заряд и капсюльная втулка соединены в единое целое с помощью гильзы. В выстрелах раздельного гильзового заряжания снаряд отделен от гильзы.
Количество боевых артвыстрелов и других боеприпасов на один образец оружия, называется боекомплектом (боевым комплектом). Боекомплект является расчетно-снабженческой единицей.
Устройство и действие боевых зарядов
Боевой заряд (рис. 17), состоящий из навески бездымного пороха и воспламенителя, предназначен для метания снаряда из канала ствола. Луч огня от капсюльной втулки обеспечивает воспламенение воспламенителя, представляющего собой определенное количество (0,5—2,5% от веса заряда) зерненого дымного пороха. Воспламенитель, мгновенно сгорая, создает в гильзе давление (20—50)105Пa. Благодаря этому обеспечивается одновременный охват пламенем всей навески бездымного пороха, что создает благоприятные условия для правильного горения бездымного пороха.
Бездымный порох за тысячные доли секунды полностью сгорает в канале ствола, при этом из 1 кг пороха образуется 700—1100 л пороховых газов. Химическая энергия, заключенная в порохе, освобождается при горении и переходит в тепловую энергию сильно сжатых пороховых газов В кинетическую энергию снаряда переходит часть (25—40%) тепловой энергии пороховых газов.
К вспомогательным элементам относятся пламегасители, флегматизаторы, размеднители, уплотнители, обтюраторы.
Флегматизатор уменьшает разгар канала ствола. Основной причиной разгара является действие высоких температур и давлений пороховых газов на ствол.
Флегматизатор выполняется в виде нескольких слоев бумаги, пропитанной высокомолекулярными углеводородами (церезин, парафин). При выстреле эти вещества возгоняются и образуют между пороховыми газами и стенками ствола защитный слой. Флегматизатор в несколько раз увеличивает баллистическую жизнь орудия. В частично сгорающую гильзу флегматизатор может не укладываться- газы от сгорающего корпуса гильзы играют при этом ту же роль, что и пары флегматизатора.
Размеднитель уменьшает обеднение поверхности канала ствола. Оседающая на поверхности канала ствола медь от поясков изменяет его геометрию и ухудшает кучность боя орудия. Размеднитель - моток проволоки, изготовленной из свинца. При выстреле этот металл оседает на омедненную поверхность канала ствола и образует легкоплавкий сплав. Последний выносится пороховыми газами, а также последующими снарядами при движении их по каналу ствола. Систематическая тщательная чистка орудия, особенно раствором РЧС, также способствует снятию омеднения.
Уплотнитель фиксирует положение заряда в гильзе, что предотвращает перетирание или даже разрушение пороховых элементов при транспортировании. Это особенно опасно при низкой температуре, когда увеличивается хрупкость пороха. Изменение размеров пороха приводит к нарушению закона его горения и, как следствие, к разбросу начальных скоростей.
Обтюратор предотвращает прорыв пороховых газов через зазор между пояском снаряда и поверхностью канала ствола в начале выстрела.
Обтюратор и уплотнитель изготовляются в виде набора картонных кружков и цилиндрика.
Гильзы служат для размещения боевого заряда и соединения элементов унитарного артвыстрела в единое целое, а также для герметизации боевого заряда и обтюрации пороховых газов при выстреле. Гильзы изготовляются из латуни или малоуглеродистой стали. Внешние очертания гильзы соответствуют зарядной каморе орудия, причем размеры гильзы по диаметру на 0,2—1,5 мм меньше. Зазор увеличивается от дна к дульцу. Это обеспечивает свободное заряжание и экстрактирование ее после выстрела.
Герметичность боевого заряда и соединение со снарядом в унитарном выстреле обеспечиваются обжимом дульца в канавку запоясковой части снаряда. Снаряд не должен иметь качки и перекоса в гильзе.
Трещины на дне и на участке корпуса длиной 50 мм от фланца не допускаются. Гильза не должна иметь помятостей, препятствующих вхождению ее в зарядную камору.
Взрыватель — это устройство, предназначенное для образования начального взрывного импульса в целях вызова детонации разрывного заряда. Взрыватель состоит из нескольких механизмов.
Активно-реактивный выстрел занимает промежуточное положение между артвыстрелом и реактивным снарядом, сочетая в себе свойства обычных и реактивных боеприпасов.
Особенностью этого выстрела является то, что за счет боевого (активного) заряда снаряд приобретает некоторую начальную
скорость, а за счет реактивного заряда, сгорающего при полете снаряда в воздухе, снаряд получает приращение скорости, а также дальности стрельбы.
Активно-реактивный выстрел с кумулятивной гранатой применяется для 73-мм орудия БМП. Кумулятивная боевая часть, двигательная установка и оперение снаряда соответствуют аналогичным элементам выстрела к станковому гранатомету. В гильзе 5 (рис. 18) размещен боевой заряд 4 из бездымного ленточного пороха, закрытого герметизирующей крышкой 2. В дно гильзы 5 ввинчена перфорированная трубка 6 с воспламенителем 3. Передний конец трубки имеет вырезы для стыковки со снарядом, в донную часть ее ввинчена капсюльная втулка 7 ЭКВ электрического действия.
Устройство и действие снарядов
Снаряды для борьбы с бронированными целями предназначены для стрельбы прямой наводкой в целях пробития брони и нанесения поражения оборудованию и экипажу, находящемуся за броней. К этим снарядам относятся: бронебойные (калиберные), бронебойные подкалиберные и кумулятивные.
ним, придают снаряду вращательное движение и обеспечивают обтюрацию пороховых газов. В донной части корпуса 3 размещается разрывной заряд 4 (обычно из A-IX-2) и ввинчивается донный взрыватель 6 с трассером. На корпусе имеется один-два центрующих утолщения для центрирования снаряда в канале ствола. Диаметральный зазор между утолщением и стенками
рола порядка 0,1—0,25 мм. Головная часть снарядов, как правив, притупляется, чтобы при ударе о наклонный лист брони не было рикошетирования.
Остроголовый снаряд имеет недостаточно хорошую баллистичекую форму, поэтому значительно быстрее теряет скорость (и энергию) в полете. Его бронепробиваемость с увеличением дальности падает резче, чем у снарядов тупоголового и с бронебойным наконечником, имеющих баллистические наконечники 1. При ударе о броню головная часть остроголового и тупоголового снарядов разрушается. Чтобы при этом предохранить от раскола делаются подрезы (локализаторы) б. По этим подрезам при ударе происходит разрушение головной части, а корпус сохраняется.
Для увеличения бронепробивного действия на корпусе укрепляют на специальном припое бронебойный наконечник 2 обычно из того же материала, что и материал корпуса. Наконечник при ударе разрушается, но при этом разрушается и поверхностный слой брони. По мере углубления осколки от наконечника и лицевых слоев брони создают условия для всестороннего обжатия головной части, сохраняя на более длительное время корпус задаренным. При всех прочих равных условиях такой снаряд пробивает броню примерно на 20% большей толщины. Подрезов снаряд не имеет.
После пробития брони срабатывает взрыватель, поражение оборудования и экипажа бронецели осуществляется осколками снаряда и осколками от брони.
Бронебойные подкалиберные снаряды широко применялись уже в годы второй мировой войны, в настоящее время они полностью вытеснили бронебойные калиберные снаряды ввиду более высокой броне-пробиваемости.
Бронепробиваемость определяется запасом кинетической энергии снаряда в момент удара и площадью его поперечного сечения.
Бронепробиваемость подкалиберного снаряда тем больше, чем больше скорость встречи и его масса и чем меньше диаметр активной части снаряда. Бронепробиваемость снаряда зависит также от конструкции снаряда и прочности материала активной части снаряда, прочности брони и угла встречи снаряда с броней.
Подкалиберный снаряд (рис. 20, а) состоит из поддона, прикрытого сверху баллистическим наконечником. Внутри поддона размещен бронебойный сердечник. Для обеспечения большой начальной скорости снаряда поддон облегчен за счет придания ему катушечной формы я небольшой длины, а для обеспечения большой массы при небольшой площади поперечного сечения активная часть снаряда—сердечник—изготовлен из материала большой плотности , (карбида вольфрама).
При попадании в броню сердечник углубляется в ее металл, а поддон остается на лицевой стороне, передавая при этом сердечнику часть энергии. Ввиду малого диаметра на единицу площади металла брони приходится большое количество кинетической энергии, что приводит к пробитию броневых плит большей толщины, чем это может сделать калиберный снаряд. Большей бронепробиваемости способствует материал сердечника, уступающий по твердости только алмазу.
В снарядах с отделяющимся поддоном устранен и второй недостаток: малая поперечная нагрузка. При вылете из канала ствола у снарядов такого типа поддон отделяется, а активная часть летит к цели, хорошо сохраняя скорость на траектории.
Снаряд к нарезной пушке имеет поддон 3, нижняя часть которого имеет ведущий поясок 8. Внутрь поддона вставлен корпус 4 с карбидовольфрамовым сердечником 5. Сверху сердечник прикрыт головкой 2, а в дно корпуса 4 ввинчен трассер 6. В служебном обращении корпус удерживается стопорными винтами 7.
После вылета из канала ствола под действием большой силы сопротивления воздуха, а также остаточного давления в каморе а движение поддона резко замедляется. Он отстает от корпуса и падает перед танком; стрелять этими снарядами через головы своих войск также запрещается.
Бронепробиваемость снаряда с карбидовольфрамовым сердечником при прочих равных условиях несколько выше при ударе по нормали (ввиду его высокой твердости) по сравнению со стальным корпусом, но ниже—под большими углами (из-за его хрупкости).
В средней части снаряда или ближе к его дну в снарядах к гладкоствольным пушкам впрессован обтюрирующий поясок 14. В снарядах к нарезным пушкам устанавливается кольцо 13, свободно вращающееся на корпусе снаряда, с впрессованным в него ведущим пояском 12 (такой ведущий поясок называется пояском плавающего типа).
В дно корпуса 4 ввинчен корпус 8 стабилизатора, соединенный с помощью осей 11 с лопастями 9. В служебном обращении лопасти 9 удерживаются нитями 15, сгорающими при выстреле.
Для обеспечения действия снаряда в его головку ввинчивается взрыватель типа ГПВ (головной пьезоэлектрический взрыватель). Он состоит из следующих частей: пьезогенератора, предохранительно-взводящего устройства, искрового электродетонатора (ИЭД) и детонирующего устройства. Детали этих частей собраны в корпусе и во ввинченной в него втулке. Сверху корпус прикрыт колпачком, застопоренным чекой
Основу пьезогенератора составляет пьезоэлемент из титаната бария BaTiO3. Отшлифованные торцы пьезоэлемента соприкасаются сверху с ударником, снизу—с центральным контактом, который размещен в изоляционных втулках. Все эти детали поджаты гайкой и прикрыты сверху мембраной.
При движении по стволу силы инерции прижимают лопасти 9 снаряда (см. рис. 22) к корпусу 8 стабилизатора.
При движении по нарезному стволу (см. рис. 22, Б) ведущий поясок 12 вместе с кольцом 13 будет идти по нарезам, а корпус 4 снаряда силами трения будет несколько увлекаться. При этом он получает небольшое проворачивание.
На лопасти действуют силы инерции, направленные в сторону движения -снаряда (снаряд замедляет движение). Лопасть поворачиваются, и встречный поток воздуха раскрывает их. Проворачивание (до ≈10 об/с) снаряд гладкоствольной пушки приобретает благодаря скосам на лопастях, а снаряд нарезной пушки будет сохранять проворачивание, полученное в канале ствола.
При ударе о броню на торцах пьезоэлемента возникают разноименные электрические заряды с высокой разностью потенциалов (несколько киловольт). Они накапливаются на нижнем конце стержня и внутренних краях чашечки . Когда разность потенциалов достигает .700—2500В, в промежутке а проскакивает искра. Взрыв искрового электродетонатора ИЭД перебивает перегородку во втулке 12 и передается передаточному заряду, а затем детонатору. Взрывная волна от детонатора передается капсюлю-детонатору (см. рис. 22) снаряда.
Пьезоэлектрические взрыватели обладают высоким быстродействием и большой надежностью. Перед заряжанием для обеспечения надежного срабатывания взрывателя колпачок снимается. Можно вести стрельбу и с колпачком (в дождь—обязательно с колпачком).
Действие снаряда основано на кумулятивном эффекте. Кумулятивный эффект—вид направленного взрыва.
Разрывной (кумулятивный) заряд выполняется в виде цилиндра ВВ с выемкой, которая должна быть обращена к преграде. Возбуждение взрыва ВВ производится с другого конца цилиндра. Продукты взрыва (рис. 23) с давлением в несколько десятков гигапаскалей (ГПа) действуют практически по нормали к поверхности выемки. Взаимодействуя между собой под углом, они образуют газовую кумулятивную струю. Кумулятивный эффект резко усиливается, если выемка покрыта тонкой (1—3 мм) металлической облицовкой (воронкой), плотно прилегающей к ВВ. Концентрация энергии в металлической струе в 20—30 раз больше, чем в газовой, поэтому металлическая воронка устанавливается всегда и обычно в виде конуса. Под действием продуктов взрыва облицовка обжимается и из нее выдавливается металлическая струя. На формирование кумулятивной струи уходит 10—20% внутренних
слоев металла воронки. Остальная часть воронки обжимается в веретенообразное тело—пест.
Кумулятивная струя имеет вид иглы диаметром в средней части для орудий среднего калибра 3—4 мм. Длина ее в момент сформирования составляет примерно две длины образующей воронки. Головная часть струи движется со скоростью 8—10 км/с, и далее к хвосту скорость падает до 1—0,5 км/с. Пест имеет скорость около 0,5 км/с и участия в пробитии брони не принимает. В месте контакта струн с броней возникает очень большое давление—100—200 ГПа (1—2 млн. атм). Слои брони под действием струи дробятся и вымываются. На лицевой стороне брони вокруг входного отверстия образуется валик металла с рваными краями, на которых заметно небольшое оплавление. Это является следствием нагрева их выделившимся при ударе теплом. Отсюда неправильное название снарядов—бронепрожигающие, которое появилось тогда, когда это явление не было достаточно изучено. По мере проникновения струи в толщу металла брони явление дробления и вымывания частиц уступает место вытеснению металла вперед и в стороны. В металле, прилегающем к пробоине, создается уплотненный слой толщиной 2—5 мм Металл струи частично оседает на стенках пробоины: струя срабатывается. По мере углубления диаметр пробоины уменьшается вследствие падения скорости и уменьшения массы струи. В среднем диаметр пробоины составляет 0,2—0,3 диаметра кумулятивной выемки снаряда у основания, но примерно в 10 раз больше диаметра струи После пробития брони с ее внутренней стороны откалывается небольшое количество осколков, внутрь устремляются также остатки струи, движущиеся в очень узком конусе. Попадание их в боеприпасы и горючее бронецели приводит к возникновению пожара.
Вращательное движение снаряда резко уменьшает бронепробиваемость. Вращающиеся снаряды (при частоте вращения 50—80 об/с и более) имеют бронепробиваемость 1,0—1,5 калибра, а невращающиеся —в 3 раза больше. Под действием вращения струя искривляется. Все современные кумулятивные снаряды для гладкоствольных и нарезных пушек и боевые части управляемых и неуправляемых реактивных снарядов невращающиеся (не надо при этом путать вращение с проворачиванием).
Основная особенность кумулятивного снаряда заключается в том, что его бронепробиваемость зависит от конструкции заряда, но не зависит от скорости встречи с броней и, следовательно, от дальности стрельбы. Однако существует такое оптимальное расстояние между передним торцом заряда и поверхностью брони в момент разрыва, когда струя имеет наибольшую бронепробиваемость. Это расстояние называется фокусным. Оно определяется опытным путем. Фокусное расстояние примерно равно двум диаметрам конической выемки у основания. При разрыве снаряда от брони на расстоянии, меньшем фокусного, бронепробиваемость уменьшается вследствие того, что кумулятивная струя еще не успевает сформироваться. На большем расстоянии струя растягивается вследствие наличия градиента скорости, при этом хвостовая часть успевает разрушиться.
На последнем свойстве струи основан способ защиты от кумулятивных снарядов с помощью так называемых “взводных” экранов (листы металла, сетки и т. д.). Взрыватель, ударяясь об экран, заставляет срабатывать кумулятивный заряд на большем удалении от брони, чем фокусное расстояние. Однако защита эффективна тогда, когда экран располагается от брони на значительном расстоянии. Недостатком экранов являются их низкая живучесть и громоздкость, поэтому они используются, как правило, для защиты наиболее уязвимой части танка—его бортов
Действие снаряда зависит от материала облицовки, он должен быть достаточно прочным, пластичным и большой плотности. Медная облицовка дает бронепробиваемость на 20% больше, чем воронка из малоуглеродистой стали. Большая плотность и пластичность способствуют образованию большей по массе и длине кумулятивной струи.
Большое значение имеют чистота обработки облицовки (особенно внутренней поверхности) и точность выполнения геометрических размеров облицовки, заряда и корпуса снаряда.
Кумулятивные снаряды, как и бронебойные всех типов, могут использоваться для разрушения сооружений и поражения находящихся в них вооружения и живой силы противника. Кумулятивные снаряды обладают осколочным действием. Современные снаряды пробивают по нормали броневые плиты, равные по толщине примерно 4 калибрам.
Осколочно-фугасные (ОФ) снаряды служат для разрушения сооружений, поражения вооружения и техники, уничтожения и подавления живой силы противника. При отсутствии бронебойных и кумулятивных снарядов они могут применяться для стрельбы по бронецелям. Осколочно-фугасный снаряд обладает осколочным и фугасным действием.
В отличие от снаряда к гладкоствольной пушке снаряд для нарезной пушки (рис. 24,Б) оперения не имеет. В корпусе 2 впрессовываются один-два ведущих пояска 9,
При движении по каналу гладкого ствола вследствие того, что центр масс лопасти расположен от оси снаряда на большем расстоянии, чем ее ось, силы инерции будут стремиться раскрыть лопасти, срезая стопорные винты При вылете из канала ствола лопасти сразу раскрываются, обеспечивая стабилизацию снаряда в полете. Необходимое проворачивание снаряд получает в полете благодаря скосам на лопастях.
Снаряд для нарезной пушки приобретает вращение при движении ведущих поясков по нарезам вместе с корпусом. В полете снаряд стабилизируется вращением.
Основу взрывателя составляет огневая цепь. Она представляет собой комбинацию элементов, состоящих из различных ВВ (рис. 25).
Начальный импульс в огневой цепи дает капсюль-воспламенитель 1 при наколе его жалом а. Между капсюлем-воспламенителем 1 и капсюлем-детонатором 3 может устанавливаться замедлитель 2 из прессованного черного пороха. Если кран б открыт, то луч огня от капсюля к капсюлю проходит беспрепятственно. При закрытом кране горит пороховая запрессовка, обеспечивая замедление в действии взрывателя. Капсюль-детонатор 3 усиливает луч огня, уже давая взрывной импульс. В ряде взрывателей (по конструктивным соображениям) ставят передаточный заряд 4. Детонатор 5 вызывает взрыв разрывного заряда 6.
Огневая цепь взрывателя может включать в себя самоликвидатор. Он состоит из капсюля-воспламенителя 7 воспламенительного механизма, большого замедлителя 8 (горение его должно продолжаться в течение нескольких или даже нескольких десятков секунд) и усилительного заряда 9, подрывающего капсюль-детонатор 3 взрывателя. Луч огня капсюля-воспламенителя 7 может использоваться для воспламенения пороховой запрессовки пиротехнического предохранителя.
В конкретных образцах взрывателей некоторые элементы огневой цепи могут быть изъяты или добавлены новые.
По месту установки взрыватели могут быть головными, донными и головодонными. Огневая цепь последних аналогична рассмотренной. В донном взрывателе или донной части головодонного взрывателя элементы огневой цепи размещены в обратном порядке, так как разрывной заряд находится сверху взрывателя. Элементы воспламенительного механизма устанавливаются одинаково во всех взрывателях.
По степени предохранения от преждевременного срабатывания (например, от сотрясения при выстреле) капсюлей взрыватели делятся на предохранительного (большинство), полупредохранительного (редко) и непредохранительного (в настоящее время не применяются) типа. В первом случае предохранитель, препятствующий срабатыванию взрывателя, а следовательно, разрыву снаряда, расположен между капсюлем-детонатором и детонатором, т. е. в служебном обращении и при движении по каналу ствола оба капсюля изолированы. Во втором — предохранитель размещен за капсюлем-воспламенителем и в третьем—такой предохранитель отсутствует.
По дальности взведения взрыватели можно разделить на два типа: с взведением за дульным срезом ствола (в нескольких метрах) и с дальним взведением (в нескольких десятках метров).
Взрыватели, в которых перемещаются механические детали, называются механическими. Взрыватели, в которых используется электрическая энергия, называются пьезоэлектрическими (электрическими).
Взрыватель РГМ (В-429) — головной, предохранительного типа, с взведением за дульным срезом, механического типа, с тремя установками. Взрыватель состоит из следующих частей: ударного механизма, установочно-замедлительного механизма, поворотного предохранительного механизма и детонирующего устройства.
Установочно-замедлительный механизм состоит из крана, замедлителя и усилителя во втулочке. Кран имеет канал для| прохода (если он открыт) луча огня от капсюля-воспламенителя к капсюлю-детонатору при срабатывании взрывателя. На торце крана нанесена стрелка, а на корпусе —установочные риски с отметками “О” (“Открыт”) и “З” (“Закрыт”).
Взрыватель имеет три установки:
1) на мгновенное действие (без колпачка, с установкой крана на “О”), обеспечивающее осколочное действие снаряда;
2) на инерционное действие (с колпачком, с установкой крана на “О”—в таком виде взрыватель поступает с завода), обеспечивающее осколочно-фугасное действие снаряда;
3) на замедленное действие (с колпачком, с установкой крана на “З”), обеспечивающее фугасное действие снаряда.
Установка взрывателя производится перед заряжанием пушки.
Если в канале ствола случайно от сотрясения при открытом кране сработал один из капсюлей, взрыв капсюля-детонатора не передается детонирующему устройству из-за большой толщины диафрагмы. Если же кран закрыт и сработал капсюль-воспламенитель, то есть опасность после прогорания замедлителя получить разрыв снаряда близко от пушки. Чтобы этого не произошло, установлен стопор-ныряло, который под действием давления газов от капсюля-воспламенителя, срезая чеку, опускается вниз и стопорит поворотную втулку в исходном положении.
Действие снаряда у преграды зависит от установки взрывателя, в конечном итоге — от времени его срабатывания. Оно равно при разных установках: на мгновенное действие—меньше 0,001, на инерционное действие—порядка 0,005—0,01 и на замедленное действие—от 0,1 до 0,15 с.
При первой установке снаряд дает осколочное действие. При встрече с преградой под действием грунта ударник перемещается навстречу ударнику. Вследствие быстрого срабатывания взрывателя снаряд мало углубляется в преграду и разрыв происходит почти над поверхностью грунта. Зона разлета осколков имеет сложные очертания, так как скорость разлета осколков складывается со скоростью встречи снаряда с преградой (рис. 26). Наибольшее количество осколков (до 70%) дают стенки корпуса снаряда. Разлетаются эти осколки в боковом направлении. Начальная скорость разлета находится в пределах 700—1200 м/с. Для вывода из строя живой силы обычно считают только осколки, имеющие массу не менее 4 г, так как мелкие осколки быстро теряют скорость. 76-мм снаряд дает около 200 убойных осколков, 152-мм—до 800.
Осколочное действие ОФ снарядов оценивается приведенной зоной осколочного действия. За приведенную зону осколочного действия принимается прямоугольник, равновеликий площади, в пределах которой при разрыве снаряда вероятность поражения цели близка к 1,0. При этом цели, представленные в виде мишеней. могут быть двух видов: “стрелки в рост” и “стрелки лежа”.
При установке взрывателя на замедленное действие луч огня от капсюля-воспламенителя передается капсюлю-детонатору через замедлитель , так как в этом случае кран закрыт. Разрыв снаряда происходит со значительным замедлением.
Фугасное действие ОФ снарядов оценивается размерами воронки (рис. 27), которую делает снаряд в грунте средней плотности. Диаметр воронки при этом получается в 3—5 раз больше ее глубины.
Стрельба с установкой взрывателя на замедление может применяться по сооружениям с перекрытием и при стрельбе на рикошетах. Рикошетом называется такое взаимодействие снаряда с грунтом, которое сопровождается ударом снаряда о грунт и отскоком от поверхности грунта. При стрельбе по грунту с углами встречи до 10°, если не произошло разрыва снаряда, рикошетируют все снаряды; при углах 10—20°—до 75%, при углах 20—30°—только 30%, а при больших углах—все остаются в грунте.
Снаряды малого калибра делают только осколочными в связи с тем, что они не могут дать значительного фугасного действия из-за малого количества ВВ. Стенки корпуса осколочного
снаряда имеют большую толщину и необходимое количество ВВ для получения нужного осколочного действия. В фугасных снарядах толщина стенок корпуса минимальна: только для получения необходимой прочности при выстреле и углублении в грунт.
В ОФ снарядах среднего калибра преобладает осколочное действие, в снарядах большого калибра — фугасное.
... до 1 км, а на участке прорыва - на фронте до 500 м. Мотострелковый взвод наступает на фронте до 300 м. Вопрос № 2: «Боевые задачи подразделений и частей в наступлении, их содержание. Боевой порядок подразделения и части в наступлении (построение, элементы)» Мотострелковый взвод наступает в составе роты, в резерве батальона, в штурмовой группе и в боевом разведывательном дозоре может ...
ления разведки (4 чел.) и связи (3 чел) с р/ст - Р-159 и 4 км. телефонного кабеля Р - Р-274м. Всего: ЛС - 54, 8 СО, р/ст - 4, РПГ-7 - 1, ГАЗ - 66 - 6 шт. МИНБАТР Входит в МСБ на БТР и отличается от СОБАТР вооружением, техникой и количеством ЛС в огневых взводах (по 26 чел.). Всего: ЛС -66, 8 120 мм миномётов, ГАЗ-66 - 10, р/ст - 4, РПГ-7 - 1. Противотанковый взвод (ПТВ) Является основным ...
... резко снизилось и ориентируется сегодня на комплектующие, поставляемые российскими предприятиями. В связи с известными экономическими проблемами сохранен выпуск чисто символических партий танков, призванных не допустить полного развала производства, либо экспортных образцов и комплектующих к ним на заводах в Омске и Нижнем Тагиле. Опытно-конструкторские работы также опираются на заделы, ...
... дальности в прицельные устройства, высокая точность измерения, практически не зависящая от дальности, малые размеры и вес, простота освоения и т.д. В системах управления огнем танков капиталистических стран в настоящее время используются аналоговые и цифровые электронные баллистические вычислите-ли, предназначенные для расчета углов прицеливания и бокового упреждения с учетом расстояния до цели, ...
0 комментариев