2.5. Блоки, работающие с памятью
Для хранения в памяти отдельных числовых значений и массивов таких значений используются сохраняемые величины и матрицы сохраняемых величин.
Сохраняемые величины могут использоваться в модели для хранения исходных данных, которые надо изменять при различных прогонах модели, промежуточных значений и результатов моделирования. В начале моделирования все сохраняемые величины устанавливаются равными 0. Для установки отличных от 0 начальных значений сохраняемых величин используется оператор INITIAL, имеющий следующий формат:
1
INITIAL X$ имя, значение
1.5
INITIAL X j, значение Здесь имя и j - соответственно имя и номер сохраняемой величины, а
значение - присваиваемое ей начальное значение (константа).
Для изменения сохраняемых величин в процессе моделирования служит блок SAVEVALUE (сохранить величину), имеющий следующий формат:
имя SAVEVALUE A,B
В поле A указывается номер или имя сохраняемой величины, в которую записывается значение операнда B. Если в поле A после имени (номера) сохраняемой величины стоит знак + или -, то значение операнда B добавляется или вычитается из текущего содержимого сохраняемой величины. Например:
1
SAVEVALUE 5,Q$LINE
1.5
SAVEVALUE NREF+,1
Сохраняемые величины имеют единственный СЧА с названием X, значением которого является текущее значение соответствующей сохраняемой величины.
Изменим пример на рис. 14 таким образом, чтобы исходные данные модели (средний интервал поступления транзактов и среднее время обслуживания) были заданы сохраняемыми величинами, а результат моделирования (количество потерянных транзактов) фиксировался также в сохраняемой величине. Такая модель будет иметь вид, показанный на рис. 15.
Матрицы сохраняемых величин дают возможность упорядочить сохраняемые значения в виде матриц m*n, где m - число строк, n - число столбцов матрицы. Каждая матрица должна быть перед началом моделирования определена с помощью оператора MATRIX (определить матрицу), имеющего следующий формат:
имя MATRIX A,B,C
Поле A оператора не используется и сохранено в GPSS/PC для совместимости со старыми версиями GPSS. В полях B и C указываются соответственно число строк и столбцов матрицы, задаваемые константами, причем общее число элементов, равное произведению B на C, не должно превышать 8191. Например, оператор
MTAB MATRIX,10,2 определяет матрицу с именем MTAB, содержащую десять строк и два столбца.
1
INITIAL X$TARR,100
INITIAL X$TSRV,160
STO2 STORAGE 2
EXP FUNCTION RN1,C24
0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915
.7,1.2/.75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3
.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/.98,3.9
.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
GENERATE X$TARR,FN$EXP
ENT1 GATE SNF STO2,REFUS
ENTER STO2
ADVANCE X$TSRV,FN$EXP
LEAVE STO2
OUT TERMINATE 1
REFUS TRANSFER.1,,COUT
ADVANCE 250,FN$EXP
TRANSFER,ENT1
COUT SAVEVALUE NREF+,1
TRANSFER,OUT
1.5
Рис. 15
В начале моделирования элементы всех определенных матриц устанавливаются равными 0. Для установки отличных от 0 начальных значений отдельных элементов матриц используется оператор INITIAL, имеющий следующий формат:
1
INITIAL MX$ имя ( a,b ), значение
1.5
INITIAL MX j ( a,b), значение Здесь имя и j - соответственно имя и номер матрицы; a и b - номера соответственно строки и столбца, задаваемые константами; значение присваиваемое элементу матрицы начальное значение, задаваемое также константой.
Для изменения значений элементов матриц в процессе моделирования служит блок MSAVEVALUE (сохранить значение элемента матрицы), имеющий следующий формат:
имя MSAVEVALUE A,B,C,D
В поле A указывается имя или номер матрицы, после которого, как и в блоке SAVEVALUE, может стоять знак + или -. В полях B и C указываются номера соответственно строки и столбца, определяющие изменяемый элемент матрицы. В поле D указывается величина, используемая для изменения заданного элемента матрицы. Например:
1
MSAVEVALUE 5,3,2,X1
1.5
MSAVEVALUE MTAB+,P$ROW,P$COL,1
Матрицы имеют единственный СЧА с названием MX, ссылка на который записывается в следующем виде:
1
MX$ имя ( a,b )
1.5
MX j ( a,b) Здесь имя и j - соответственно имя и номер матрицы; a и b - номера соответственно строки и столбца, задаваемые константами или ссылками на СЧА параметров транзактов. Например:
1
MX5(2,1)
1.5
MX$MTAB(P$ROW,P$COL)
2.6. Блоки для работы со списками пользователя
Так как заблокированные транзакты находятся в списке текущих событий, то при большом количестве таких транзактов симулятор расходует слишком много времени на просмотр этого списка с целью выбора очередного транзакта для продвижения. Для экономии машинного времени заблокированные транзакты целесообразно помещать в так называемые списки пользователя и оставлять их там до тех пор, пока не выполнятся условия, позволяюшие дальнейшее продвижение этих транзактов. Кроме того, размещение ожидающих транзактов в списках пользователя позволяет организовать различные дисциплины очередей, отличные от дисциплины "раньше пришел - раньше обслужен", реализованной в списке текущих событий.
Списки пользователя представляют собой некоторые буферы, куда могут временно помещаться транзакты, выведенные из списка текущих событий. В отличие от списков текущих и будущих событий транзакты вводятся в списки пользователя и выводятся из них не автоматически, а в соответствии с логикой модели с помощью специальных блоков.
Для ввода транзактов в список пользователя служит блок LINK (ввести в список), который может быть использован в двух режимах: условном и безусловном. Ограничимся рассмотрением лишь безусловного режима, в котором блок LINK имеет следующий формат:
имя LINK A,B
В поле A задается имя или номер списка пользователя, в который безусловным образом помещается транзакт, вошедший в блок. Поле B определяет, в какое место списка пользователя следует поместить этот транзакт. Если в поле B записано ключевое слово FIFO, то транзакт помещается в конец списка, если LIFO - в начало списка. В других случаях транзакты упорядочиваются в соответствии с вычисленным значением поля B, где обычно записывается один из СЧА транзактов, таких как PR, M1 или P. Если поле B содержит СЧА PR, то транзакты упорядочиваются по убыванию приоритета. В остальных случаях производится упорядочение по возрастанию указанного СЧА.
Например, блок
LINK 5,FIFO помещает транзакты в список пользователя с номером 5 в порядке их поступления в блок. Блок
LINK BUFER,P$ORDER помещает транзакты в список пользователя с именем BUFER, упорядочивая их по возрастанию параметра с именем ORDER.
Условия, при которых транзакт помещается в список пользователя, в безусловном режиме проверяются средствами, предусмотренными разработчиком модели. Например, направить транзакт в список пользователя в случае занятости устройства можно так, как показано на рис. 16. Если устройство с именем FAC4 занято, то блок GATE не впускает транзакт в блок SEIZE, а направляет его в блок LINK с именем WAIT, и транзакт вводится в конец списка пользователя с именем BUFER.
1
....................
GATE NU FAC4,WAIT
SEIZE FAC4
....................
WAIT LINK BUFER,FIFO
....................
1.5
Рис. 16
Для вывода одного или нескольких транзактов из списка пользователя и помещения их обратно в список текущих событий служит блок UNLINK (вывести из списка), имеющий следующий формат:
имя UNLINK X A,B,C,D,E,F
В поле A указывается имя или номер списка пользователя. Поле B содержит имя блока, в который переходят выведенные из списка пользователя транзакты. В поле C указывается число выводимых транзактов или ALL для вывода всех находящихся в списке транзактов.
Операнды в полях D и E вместе со вспомогательным операндом X определяют способ и условия вывода транзактов из списка пользователя. Если поля D и E пусты, то и операнд X не используется, а транзакты выводятся с начала списка пользователя. Если поле D содержит ключевое слово BACK, то поле E и вспомогательный операнд X не используются, а транзакты выводятся с конца списка. В остальных случаях значение поля D интерпретируется как номер параметра транзактов, находящихся в списке пользователя, а из списка выводится заданное число тех транзактов, у которых значение этого параметра по отношению к значению операнда в поле E удовлетворяет условию, заданному вспомогательным операндом X. Операнд X принимает те же значения, что и в блоке TEST.
В поле F указывается имя блока, куда переходит транзакт, выходящий из блока UNLINK, если из списка пользователя не выведен ни один транзакт. Если это поле пусто, то выводящий транзакт переходит в следующий блок независимо от количества выведенных транзактов.
Например, блок
UNLINK 5,NEXT,1 выводит из списка пользователя с номером 5 один транзакт с начала списка и направляет его в блок с именем NEXT. Блок
UNLINK BUFER,ENT1,1,BACK выводит из списка пользователя с именем BUFER один транзакт с конца списка и направляет его в блок с именем ENT1. Блок
UNLINK E P$UCH,MET2,ALL,COND,P$COND,MET3 выводит из списка пользователя, номер которого записан в параметре UCH выводящего транзакта, и направляет в блок с именем MET2 все транзакты, содержимое параметра COND которых равно содержимому одноименного параметра выводящего транзакта. Если таких транзактов в списке не окажется, то выводящий транзакт будет направлен в блок с именем MET3, в противном случае - к следующему блоку.
Следует отметить следующие особенности выполнения блока UNLINK. Во-первых, если поля D и E содержат ссылки на СЧА транзактов, то поле D вычисляется относительно транзактов в списке пользователя, а поле E - относительно активного транзакта. Во-вторых, после вывода транзактов из списка симулятор продолжает или начинает продвижение транзакта с наивысшим приоритетом, а при равенстве приоритетов отдает предпочтение транзакту-инициатору вывода.
Каждый список пользователя имеет следующие СЧА: CH - текущая длина списка; CA - средняя длина списка (целая часть); CM - максимальная длина списка; CC - общее число транзактов, вошедших в список; CT - целая часть среднего времени пребывания транзакта в списке.
Воспользуемся рассмотренными блоками для моделирования многоканальной СМО с ожиданием транзактов в списке пользователя (рис. 17). Если МКУ с именем STO2 не заполнено, блок GATE впускает вновь прибывший транзакт в блок ENTER, и в МКУ занимается один канал. Если же МКУ заполнено, то блок GATE направляет транзакт в блок LINK с именем WAIT, помещающий транзакт в конец списка пользователя с именем BUFER, моделирующего очередь к МКУ. Каждый транзакт, покидающий МКУ по завершении обслуживания и освобождающий один канал, проходит блок UNLINK и выводит один транзакт с начала списка (если список не пуст), направляя его в блок с именем ENT1 на занятие канала в МКУ.
1
STO2 STORAGE 2
EXP FUNCTION RN1,C24
0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915
.7,1.2/.75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3
.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/.98,3.9
.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
GENERATE 100,FN$EXP
GATE SNF STO2,WAIT
ENT1 ENTER STO2
ADVANCE 160,FN$EXP
LEAVE STO2
UNLINK BUFER,ENT1,1
TERMINATE 1
WAIT LINK BUFER,FIFO
1.5
Рис. 17
Заметим, что для изменения дисциплины обслуживания на "позже пришел - раньше обслужен" достаточно или заменить в поле B блока LINK FIFO на LIFO, или записать в поле D блока UNLINK операнд BACK. Следует также обратить внимание на то, что блоки QUEUE-DEPART для сбора статистики об ожидающих транзактах не используются, так как почти все те же данные можно получить из статистики о списке пользователя.
Рассмотрим еще один пример, иллюстрирующий использование списков пользователя для организации нестандартных дисциплин обслуживания. Пусть в одноканальной СМО с ожиданием требуется организовать такую дисциплину, при которой приоритет отдается заявкам с наименьшим временем обслуживания. Такая модель будет иметь вид, показанный на рис. 18.
В параметр TSRV поступающих в модель транзактов в блоке ASSIGN записывается случайное время обслуживания, вычисляемое с использованием функции EXP. Если устройство SYSTEM свободно, то блок GATE впускает транзакт в блок SEIZE, и устройство занимается на время P$TSRV. Если же в момент поступления транзакта устройство занято, то блок GATE направляет транзакт в блок LINK, который вводит тран
1
EXP FUNCTION RN1,C24
0,0/.1,.104/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915
.7,1.2/.75,1.38/.8,1.6/.84,1.85/.88,2.12/.9,2.3
.92,2.52/.94,2.81/.95,2.99/.96,3.2/.97,3.5/.98,3.9
.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8
GENERATE 100,FN$EXP
ASSIGN TSRV,80,EXP
GATE NU SYSTEM,WAIT
SFAC SEIZE SYSTEM
ADVANCE P$TSRV
RELEASE SYSTEM
UNLINK LINE,SFAC,1
TERMINATE 1
WAIT LINK LINE,P$TSRV
1.5
Рис. 18
закт в список пользователя LINE, упорядочивая транзакты по возрастанию времени обслуживания, записанного в параметре P$TSRV. Блок UNLINK по освобождении устройства выводит с начала списка транзакт с наименьшим временем обслуживания, обеспечивая тем самым заданную дисциплину.
... того, имеется ряд так называемых системных атрибутов, относящихся не к отдельным объектам, а к модели в целом. Значения атрибутов всех объектов модели по окончании моделирования Выводятся в стандартный отчет GPSS/PC. Большая часть атрибутов дос- тупна программисту и составляет так называемые стандартные число- вые атрибуты (СЧА), 0которые могут использоваться в ...
... 6. Петухов О.А. , Морозов А.В. , Петухова Е.О. Моделирование системное, имитационное, аналитическое. Учебное пособие – Санкт-Петербург 2008 7. Норенков И.П., Федорук Е.В.Имитационное моделирование систем массового обслуживания. Методические указания – Москва 1999 8. Кутузов О.И., Татарникова Т.М., Петров К.О. Распределенные информационные системы управления. Учебное пособие – Санкт-Петербург ...
... них 10 час. – обзорные лекции, 4 час. –практические занятия, 6 час. – лабораторные работы на ЭВМ. Рабочая программа курса «Моделирование систем радиосвязи и сетей радиовещания». СОДЕРЖАНИЕ ДИСЦИПЛИНЫ 1 Введение Цели и задачи дисциплины. Основные понятия теории моделирования систем. Использование моделирования при исследовании и проектировании сетей ...
... , пакетов и кадров внутри операционной системы, процесс получения доступа компьютером к разделяемой сетевой среде, процесс обработки поступающих пакетов маршрутизатором и т.д. При имитационном моделировании сети не требуется приобретать дорогостоящее оборудование - его работы имитируется программами, достаточно точно воспроизводящими все основные особенности и параметры такого оборудования. ...
0 комментариев