2.4. Основные параметры денежных потоков
Несмотря на то что общее количество формул, приведенных в трех предыдущих главах, уже приблизилось к сотне, можно смело утверждать, что это лишь малая часть того, что имеется в арсенале финансовых вычислений. Буквально по каждому из рассмотренных способов осталась масса незатронутых вопросов: ренты пренумерандо, переменные денежные потоки, использование простых процентов в анализе рент и так далее, почти до бесконечности. Тем не менее, усвоив базовые понятия финансовых расчетов, можно заметить, что все дальнейшие рассуждения строятся по довольно универсальному алгоритму. Определяется математическая природа понятия и основные ограничения, накладываемые на него при практическом использовании. Например, сложные проценты наращиваются в геометрической прогрессии. Они применяются по большей части в расчетах по долгосрочным финансовым операциям. Затем находится решение основных задач, связанных с данным понятием – начисление и дисконтирование по сложным процентным и учетным ставкам. После этого разрабатывается методика расчета остальных параметров уравнений, описывающих данное понятие, и решается проблема нахождения эквивалентных значений отдельных параметров. При этом основным методом решения задач служат преобразование или приравнивание друг к другу множителей наращения (дисконтирования) различных показателей. Поняв эти закономерности, можно отказаться от заучивания всех возможных формул и попытаться применить данную методику для решения конкретных финансовых задач, держа при этом в памяти лишь полтора-два десятка основополагающих выражений (например, формулы расчета декурсивных и антисипативных процентов и т. п.).
Используем данный алгоритм для финансового анализа денежных потоков, в частности для расчета отдельных параметров финансовых рент. Например, предприятию через три года предстоит погасить задолженность по облигационному займу в сумме 10 млн. руб. Для этого оно формирует погасительный фонд путем ежемесячного размещения денежных средств на банковский депозит под 15 % годовых сложных процентов с начислением один раз в год. Чему должна быть равна величина одного взноса на депозит, чтобы к концу третьего года в погасительном фонде вместе с начисленными процентами накопилось 10 млн. руб.?
Планируемые предприятием взносы представляют собой трехлетнюю p-срочную ренту, p = 12, m = 1, будущая стоимость
которой должна быть равна 10 млн. руб. Неизвестным является ее единственный параметр – член ренты R. В качестве базовой используем формулу (2.3.6) из табл. 3.3.3. Данное уравнение следует решить относительно R/12 (так как планируются ежемесячные взносы). Обозначим r = R/12. Преобразовав базовую формулу, получим
Следовательно, размер ежемесячного взноса должен составить примерно 225 тыс. руб. (более точная цифра – 224,908).
Размер долга по займу (10 млн. руб.) был задан как условие предыдущего примера. На самом деле, часто данный параметр также является вычисляемой величиной, так как наряду с основной суммой займа должник обязан выплачивать проценты по нему. Предположим, что 10 млн. руб. – это основная задолженность по облигационному займу, кроме этого необходимо ежегодно выплачивать кредиторам 10 % основной суммы в виде процентов. Чему будет равна сумма ежемесячного взноса в погасительный фонд с учетом процентных выплат по займу? Так как проценты должны выплачиваться ежегодно и их годовая сумма составит 1 млн. руб. (10 млн. руб. 10 %), нам опять следует рассчитать член ренты r (R/12) по ренте сроком n = 1 год, p = 12, m =1, i = 15 %. По базовой формуле (2.3.6) его величина составит
Ежемесячно в погасительный фонд будет необходимо вносить около 78 тыс. руб. (более точная цифра – 78,0992) для ежегодной выплаты процентов в сумме 1 млн. руб. Таким образом, общая сумма ежемесячных взносов в погасительный фонд составит 303 тыс. руб. (225 + 78).
Условиями
займа может
быть предусмотрено
присоединение
суммы начисленных
за год процентов
к основному
долгу и погашение
в конце срока
наращенной
величины займа.
Таким образом,
в конце срока
эмитенту займа
придется возвратить
13 млн. 310 тыс. руб.
(10(1 + 0,1)3).
Величину ежемесячного
взноса в погасительный
фонд найдем,
используя все
ту же базисную
формулу (2.3.6)
Таким образом, ежемесячно необходимо вносить на банковский депозит около 300 тыс. руб., более точно – 299,35).
Аналогичный подход может быть применен к формированию амортизационного фонда. Известно, что амортизация основных фондов – важнейшая составная часть чистого денежного потока предприятия, остающаяся в его распоряжении. В каждом рубле получаемой предприятием выручки содержится доля амортизационных отчислений. Поэтому нет ничего противоестественного в том, чтобы предприятие, «расщепляя» поступающую выручку, перечисляло на банковский депозит сумму амортизации по каждому платежу от покупателя. В этом случае накопление амортизационного фонда происходило бы значительно быстрее за счет начисления процентов. Предположим, что по основным фондам первоначальной стоимостью 50 млн. руб. предприятие начисляет амортизацию по годовой ставке 12,5 % (линейный метод). Срок службы оборудования – 8 лет. Ежегодно начисляется 6,25 млн. руб. амортизационных отчислений. Но если предприятие располагает возможностью размещения денежных средств хотя бы под 10 % годовых, то для накопления 50 млн. руб. в течение 8 лет ему понадобится ежегодно размещать на депозите лишь по 4,37 млн. руб. Преобразовав формулу (2.3.2) из предыдущей главы, получим
Если же взносы на депозит производить ежемесячно (p = 12), то, снова применяя формулу (2.3.6) и деля полученный результат на 12, найдем
Ежемесячный
взнос на депозит
должен составить
около 350 тыс. руб.
(более точно
– 348,65). При этом
ежемесячные
амортизационные
отчисления
по линейному
методу составят
520,8 тыс. руб. (6,25/12).
Задачу можно
сформулировать
иначе: за сколько
лет предприятие
возместит
первоначальную
стоимость
основных средств,
размещая на
депозите сумму
амортизационных
отчислений
по линейному
методу (520,8 тыс.
руб. в месяц
или 6,25 млн. руб.
в год)? Для решения
этой задачи
(нахождение
срока ренты
n)
снова понадобится
формула (2.3.6), но
теперь она
будет преобразована
следующим
образом:
Полученное дробное число лет в соответствии с правилами выполнения финансовых расчетов должно быть округлено до ближайшего целого. Однако при p > 1 округляется произведение np, в нашем случае оно составляет 71,52 (5,96 12). Округлив его до 71 и разделив на 12, получим n = 5,92 года. При любых способах округления полученное значение на 2 года меньше, чем срок амортизации основных фондов по линейному методу. Предприятие таким способом может накопить сумму для замены изношенного оборудования на 2 года быстрее.
Необходимость выплачивать проценты кредитору на остаток банковской ссуды или коммерческого кредита ставит перед предприятиями задачу разработки оптимального плана погашения долга. Дело в том, что, оставляя неизменной сумму основной задолженности в течение всего срока займа, предприятие будет вынуждено выплатить максимально возможную сумму процентов по этому займу. Если же оно периодически будет направлять часть средств на погашение основного долга, то сможет сэкономить на процентах, которые начисляются на остаток задолженности. Возможны различные стратегии амортизации займов. Например, предприятие может периодически уплачивать фиксированную сумму в погашение основной задолженности. Тогда в каждом новом периоде ему понадобится меньше денег на оплату процентов, т. е. общие расходы по обслуживанию долга за период (срочная уплата) будут снижаться. Погашая ежегодно 2 млн. руб. из общей суммы трехлетнего займа 6 млн. руб., выданного под 20 % годовых, предприятие в первый год выплатит 1200 тыс. руб. процентов (6000 0,2). Срочная уплата за этот период составит 3200 тыс. руб. (2000 + 1200). За второй год проценты составят уже 800 тыс. руб. (4000 0,2), срочная уплата – 2800 тыс. руб. (2000 + 800) и т.д. Сумма выплачиваемых процентов будет снижаться в арифметической прогрессии с первым членом 1200 тыс. руб. (p i) и разностью – 400 тыс. руб. (-p i/n), n означает число членов прогрессии, в данном примере оно равно 3. Сумма этой прогрессии будет равна 2400 тыс. руб. (3 1200 – 2 3 400/2), а это значительно меньше суммы процентов, которую пришлось бы уплатить предприятию в случае единовременного погашения основного долга в конце срока ссуды – 4368 тыс. руб. (6000(1 + + 0,2)3 – 6000).
Возможен другой вариант, когда величина срочной уплаты на протяжении всего срока займа остается неизменной, но постепенно меняется ее структура – уменьшается доля, идущая на погашение процентов и увеличивается доля, направляемая в уплату по основному долгу. В этом случае сначала необходимо определить размер срочной уплаты, рассчитываемой как величина члена ренты, текущая стоимость которой равна первоначальной сумме долга при дисконтировании по процентной ставке, установленной по займу. Преобразовав формулу приведения аннуитета (4) из предыдущей главы, найдем значение R
Для полного погашения задолженности по ссуде понадобится произвести три погасительных платежа по 2848 тыс. руб. каждый. Не вдаваясь в подробности расчета структуры срочной уплаты по каждому году, отметим, что в сумме предприятию придется заплатить по займу 8544 тыс. руб., т. е. общая сумма процентов составит 2544 тыс. руб. (8544 – 6000), что заметно выше, чем по первому варианту.
Сопоставление различных вариантов погашения займа только по критерию общей величины выплаченных процентов не вполне корректно – сравниваются различные денежные потоки, для которых кроме абсолютных сумм имеет значение, в каком конкретно периоде времени деньги были уплачены или получены. Рассмотрим подробнее, что из себя представляет каждый из этих потоков (табл. 2.4.1). Вследствие действия принципа временной ценности денег сложение членов этих потоков становится бессмысленной операцией – платежи, производимые с интервалом в один год, несопоставимы. Поэтому в 5-й строке табл. 2.4.1 рассчитана дисконтированная по ставке 20 % величина каждого из потоков. Так как в последней графе этой таблицы представлен аннуитет, то его расчет произведен по формуле (2.3.4) из предыдущего параграфа. Два остальных потока состоят из неравных членов, их дисконтирование произведено по общей формуле (2.3.3). Как видно из результатов расчетов, наибольшую отрицательную величину (-6472,2) имеет приведенная сумма платежей по первому потоку, она даже превышает сумму полученного займа. Следовательно, погашая долг на таких условиях, предприятие реально несет финансовые потери. Два последних варианта не ухудшают финансового положения предприятия.
Таблица 2.4.1
Сравнение вариантов выплаты займа
Члены потока | Варианты погашения займа, тыс. руб. | ||
возврат основного долга в конце срока | фиксированная выплата основного долга | фиксированная срочная уплата | |
1. Получение займа | +6000 | +6000 | +6000 |
2. Платеж в конце первого года | -1200 | -3200 | -2848,4 |
3. Платеж в конце второго года | -1440 | -2800 | -2848,4 |
4. Платеж в конце третьего года | -7728 | -2400 | -2848,4 |
5. Приведенная к моменту получения займа сумма выплат | -6472,2 | -6000 | -6000 |
Сравнивая между собой приведенные величины денежных притоков и оттоков по финансовой операции, определяют такой важнейший финансовый показатель, как чистая приведенная стоимость (NPV – от английского net present value). Наиболее общая формула определения этого показателя
(2.4.1)
где I0 – первоначальные инвестиции в проект (оттоки денег); PV – приведенная стоимость будущих денежных потоков по проекту.
При использовании этой формулы все денежные притоки (доходы) обозначаются положительными цифрами, оттоки денежных средств (инвестиции, затраты) – отрицательными.
В нашем примере первоначально предприятие получало приток денежных средств (сумма займа – 6 млн. руб.), а затем в течение трех лет производило денежные расходы, т. е. оттоки средств. Поэтому к первоначальному моменту приводились не поступления, а затраты. Обычно при реализации инвестиционных проектов наблюдается обратная картина: сначала предприятие вкладывает средства, а затем получает периодические доходы от этих вложений. Поэтому, преобразуя (2.4.1) с учетом правил дисконтирования денежных потоков (формула (2.3.4) из предыдущей главы), получаем
, (2.4.2)
где n – общий срок финансовой операции (проекта); Rk – элемент дисконтируемого денежного потока (член ренты) в периоде k; k – номер периода.
Под процентной
ставкой i
(в данном случае
ее называют
ставкой
сравнения)
понимается
годовая сложная
эффективная
ставка декурсивных
процентов. Срок
операции n
в общем случае
измеряется
в годах. Если
же реальная
операция не
отвечает этим
условиям, т. е.
интервалы между
платежами не
равны году, то
в качестве
единицы измерения
срока принимаются
доли года,
измеренные,
как правило,
в месяцах, деленных
на 12. Например,
инвестиции
в сумме 500 тыс.
руб. принесут
в первый месяц
200 тыс. руб.
дополнительного
дохода, во второй
– 300 тыс. руб. и в
третий – 700 тыс.
руб. Ставка
сравнения равна
25 %.
Чистая приведенная
стоимость
данного проекта
составит
... Федерации и постановления Правительства Российской Федерации. Принятие нормативных правовых актов указанного органа должно осуществляться на основании решения коллегиального органа, осуществляющего регулирование финансового рынка. Предполагается, что члены коллегиального органа будут иметь статус государственных служащих и назначаться Правительством Российской Федерации на определенный срок и ...
... 7. Составляемые на предприятии планы сбалансированы между собой. Таким образом, только в результате реализации этих функций на практике можно говорить о постановке и организации финансового планирования на предприятии. Применительно к рассматриваемой организации ЗАО «Центр» для построения эффективной системы финансового планирования важно определить не только функции, но и методы планирования. ...
... И. Т. Основы финансового менеджмента. Как управлять капиталом? – М.: Финансы и статистика, 1995 . – 384 с. 2. Дыбаль С. В. Финансовый анализ теория и практика: Учеб. пособие. – СПб.: Издательский дом "Бизнес-пресса", 2004. – 304 с. 3. В. В. Ковалев, О. Н. Волкова "Анализ хозяйственной деятельности предприятия"; Москва,– Проспект, 2004 . – стр. 240-256; 4. В. В. Ковалев. Введение в финансовый ...
... получения доходов в полном объеме), зависит от множества факторов, воздействующих на предприятие изнутри и извне. В этой ситуации и проявляется понятие риска. Операционный рычаг (или операционный леверидж) - это механизм управления операционной прибылью, основанный на разделении всей совокупности операционных затрат предприятия на постоянные и переменные. Действие или эффект операционного рычага ...
0 комментариев