1. Простейшая задача оптимального быстродействия.

Пусть точка движется по прямой в соответствии с законом

(3.1)

где х - координата. Требуется найти управление и, переводящее точку из начального положения в начало координат за минимальное время Т (задача оптимального быстродействия). При этом скорость точки в конце траектории должна быть нулевой, а управление - удовлетворять условию

.

Применим к сформулированной задаче принцип максимума Понтрягина . Введем фазовые переменные . Тогда движение управляемого объекта описывается системой двух дифференциальных уравнений первого порядка:

(3.2)

Начальное положение

при t0=0 и конечное положение (0, 0) фиксированы, а конечный момент времени Т не фиксирован.

В обозначениях п.п. 1, 2 в данной задаче U ==[-1, 1], f0=1, Ф=0, а функция Гамильтона имеет вид

Общее решение сопряженной системы

легко выписывается в явном виде  

где С, D - постоянные.

Очевидно, что максимум функции Н по и U достигается при

Таким образом, оптимальное управление и может принимать лишь два значения +1 .

2.Определить управление u(t) , которое дает минимум интегралу

, в процессе, описываемом уравнением (1).
Решение.
Введем дополнительную переменную

(2)

Для этой переменной имеем дифференциальное уравнение ( (3)

с начальными условиями, получаемыми из (2), т.е. х2(0)=0. Минимизирующий функционал, используя (2), можно записать в виде I[T]=x2(T).

Построим функцию Гамильтона

Запишем сопряженную систему  (3)

Запишем 

Y1(Т)=0 (т.к. с1=0)

Y2(Т)=-1

Из поэтому Y2(е)=-1. Теперь функция Гамильтона запишется в виде H=-aY1x1+Y1u-0,5x12-0,5u2 .

По принципу максимума функция Н при фиксированных х1 и Y1 достигает максимума по u : , откуда .

Осталось решить систему уравнений (2) и (3) при условии  , Y2(Т)=-1,

с граничными условиями 

Сведем данную систему к одному уравнению относительно U.

Добавим к этому уравнению граничные условия  и решим его. Составим характеристическое уравнение к2 - (а2+1) =0, к1,2=+(-)

Найдем С1 и С2.  С2=-с2е. Тогда 

Используя граничные условия найдем С2

Таким образом, определено оптимальное решение

Примеры применения принципа максимума.


Информация о работе «Принцип Максимума Понтрягина»
Раздел: Разное
Количество знаков с пробелами: 17888
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
25233
1
627

... с нач. условием , такая что выполняется условие: -здесь достигается максимум. 2); 3). Теорема о необходимых условиях оптимальности. Если в линейной задаче быстродействия мн-ва выпуклы, -оптимальное управление, переводящее на отр. , а -соответствующая траектория, то пара удовлетворяет принципу максимума Понтрягина. 23. Применение необхо­димых условий оптималь­ности(схема и пояснения к ней). ...

Скачать
113538
12
32

... проектирования. Целью проекта является создание программного продукта (ПП), основанного на математическом пакете MatLab, реализующего математическую модель системы управления, построенной на основе оптимального закона, для системы слежения РЛС. Данный проект можно отнести к научно-исследовательской работе, которая принадлежит к типу прикладных, направленных на решение научных проблем с целью ...

Скачать
41899
0
0

... от года-x и от номера месяца в году-y следующим образом: F(x)=50-x2+10x-y2+10y. Определите, в каком году и в каком месяце прибыль была максимальной. Зав. кафедрой --------------------------------------------------   Экзаменационный билет по предмету МЕТОДЫ ОПТИМИЗАЦИИ Билет № 22 1) Постановка вариационной задачи с ограничениями. Привести пример. 2) Дайте геометрическую ...

Скачать
31890
0
18

... пользы прыгунам - и действительно принесла. Положительной стороной книги является рассмотрение всех стадий прыжка, что у нас присутствует пока только в планах на будущее. Вопросам моделирования прыжка с трамплина посвящены работы Л.П.Ремизова [2,3]. Первая из них, опубликованная в советском журнале "Теория и практика физической культуры" в 1973 году, создает впечатление то ли выборки, то ли ...

0 комментариев


Наверх