2.3 Определение фазочастотной характеристики цепи

Фазочастотная характеристика цепи (ФЧХ):

(16)

Подставляя числовые значения в (16) получим:

(17)

Результаты расчётов приведены в таблице 2.2, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 2.2


Таблица 2.2 Зависимость ArgK(jw) от частоты

w, рад/с ArgK(jw), рад
0 0
1*10^7 -0.0799271
3*10^7 -0.3226808
5*10^7 -0.6462386
7*10^7 -0.9086729
9*10^7 -1.0769648
1.1*10^8 -1.1826898
1.3*10^8 -1.2524606
1.5*10^8 -1.3011954
1.7*10^8 -1.3369474
1.9*10^8 -1.3642366
2.1*10^8 -1.3857381
2.3*10^8 -1.4031184
2.5*10^8 -1.4174637
2.7*10^8 -1.42951
2.9*10^8 -1.4397731
3.1*10^8 -1.4486249
3.3*10^8 -1.4563401
3.5*10^8 -1.4631264
3.7*10^8 -1.4691435
3.9*10^8 -1.4745161
4.1*10^8 -1.4793434
4.3*10^8 -1.483705
4.6*10^8 -1.4895127
4.8*10^8 -1.492969
5*10^8 -1.4961411
5.2*10^8 -1.4990628
5.4*10^8 -1.5017629
5.6*10^8 -1.5042658
5.8*10^8 -1.5065924
6*10^8 -1.5087609

-1,5707963



Рисунок 2.2 ‑ ФЧХ цепи; размерность ArgK(w) – рад, w – рад/с



3 РАСЧЕТ ВРЕМЕННЫХ ХАРАКТЕРИСТИК ЦЕПИ

3.1 Определение переходной характеристики цепи

Переходная характеристика цепи:

h(t)=hпр(t)+hсв(t) (18)

Т.к. воздействие – ток, а реакция – ток на индуктивности, следует (см. рисунок 3.1):

,

(19)

где Io – единичный скачок тока.

Для определения режима переходного процесса запишем входное сопротивление в операторной форме:


Рисунок 3.1‑Эквивалентная схема при t стремящемся к бесконечности


(20)

Приравнивая знаменатель к нулю, после несложных преобразований получим:

 или ,

где:

,

(21)

(рад/с)

(22)

Т.к. , следует режим колебательный, а значит:

,

(23)

где:

 (рад/с)

(24)

– угловая частота затухающих свободных колебаний в контуре, А и  ‑ постоянные интегрирования.

Для определения постоянных интегрирования составим два уравнения для начальных значений (+0) и (+0):

(25), (26) (см.

рисунок 3.2),

(27),

т.к. в момент комутации напряжение на сопротивлении R2 равно напряжению на индуктивности (см. рисунок 3.2).



(28)

(29)

Рисунок 3.2 – Эквивалентная схема в момент коммутации

Подставляя выражения (19), (21), (23), (24), (26), (27), (28), (29) в (25) получим:

(30)

(31)

(32)

(33)

Результаты расчётов приведены в таблице 3.1, а кривая, построенная на основании результатов, имеет вид графика изображённого на рисунке 3.3

Таблица 3.1 Расчёт переходной характеристики

t, с h(t)
0 0
1.00e-8 0.303504193
2.00e-8 0.489869715
4.00e-8 0.632067650
5.00e-8 0.642131278
7.00e-8 0.624823543
8.00e-8 0.613243233
1.00e-7 0.597388596
1.10e-7 0.593357643
1.30e-7 0.590241988
1.40e-7 0.590004903
1.70e-7 0.590600383
1.90e-7 0.590939689
2.00e-7 0.591026845
2.20e-7 0.591095065
2.30e-7 0.591100606
2.50e-7 0.591093538
2.60e-7 0.591088357
2.80e-7 0.591081098
3.00e-7 0.591078184

0.591078066


Рисунок 3.3 – Переходная характеристика цепи; размерность t – сек,

h(t) – безразмерная величина

Как видно из рисунка 3.3, свободные колебания затухают достаточно быстро; при таком масштабе рисунка видны колебания в течение, примерно, одного периода свободных колебаний (), однако переходной процесс длится немного дольше, а спустя 0,3 мкс колебаниями можно пренебречь т.к. они достаточно малы (см. таблицу 3.1) и считать переходной процесс завершенным.


Информация о работе «Расчёт частотных и временных характеристик линейных цепей»
Раздел: Разное
Количество знаков с пробелами: 17908
Количество таблиц: 52
Количество изображений: 28

Похожие работы

Скачать
9732
9
13

... специалистов, которые проектируют электронную аппаратуру. Курсовая работа по этой дисциплине - один из этапов самостоятельной работы, который позволяет определить и исследовать частотные и временные характеристики избирательных цепей, установить связь между предельными значениями этих характеристик, а также закрепить знания по спектральному и временному методам расчета отклика цепи. 1. Расчёт ...

Скачать
13417
3
0

... t, мкс m=100 1.982*10-4 19,82 m=100000 1,98*10-4 19,82 Временные характеристики исследуемой цепи изображены на рис.6, рис. 7. Частотные характеристики изображены на рис. 4, рис. 5. ВРЕМЕННОЙ МЕТОД АНАЛИЗА 7. ОПРЕДЕЛЕНИЕ РЕАКЦИИ ЦЕПИ НА ИМПУЛЬС С помощью интеграла Дюамеля можно определить реакцию цепи на заданное воздействие и в том случае, когда внешнее воздействие на ...

Скачать
14458
4
7

... -частотной характеристики :   Дб/дек Дб/дек н=39300 Гц н=63300Гц →63300-39300=24000Гц Расчет частотных характеристик всегда проводят в определенном диапазоне частот, в котором проявляются основные частотные свойства электрической цепи. Величину диапазона частот можно определить по полюсно-нулевой карте операторной функции. В качестве нижней ...

Скачать
25162
1
24

... . В линейной цепи – это линейные дифференциальные уравнения (ЛДУ). Существуют различные методы решения таких уравнений, и соответственно различают различные методы расчета переходных процессов. 2 Способы получение характеристического уравнения Классический метод Классический метод основан на решении ЛДУ методом вариации произвольных постоянных. Любая система ЛДУ может быть сведена к одному ...

0 комментариев


Наверх