1.3. Уравнение неразрывности


Как известно, плотность вещества в физике вводится предельным переходом: , где в механике сплошной среды следует понимать под Dm массу вещества, заключенную в объеме DW. Посмотрим, как будет выглядеть закон сохранения массы для произвольного подвижного объема сплошной среды, для которого . Из (1.12) тогда следует:

,

или в силу произвольности объема W:

. (1.16)

Это уравнение носит название уравнения неразрывности (непрерывности).

Рассмотрим частные случаи уравнения неразрывности. Для стационарного (установившегося) движения сплошной среды из (1.16) с учетом (1.7) следует:

, (1.17)

а если, кроме того, среда несжимаемая (, в том числе и неоднородная), то:

. (1.18)

Т.е. по теореме Остроградского-Гаусса (1.10) установившийся поток скорости несжимаемой среды (1.4) сквозь любую замкнутую поверхность равен нулю. Так как через боковую поверхность трубки тока по определению нет потока скорости, то поток через любое ее поперечное сечение одинаков:

(1.19)

и численно равен объемному расходу сплошной среды. Отсюда можно сделать вывод: внутри объема несжимаемой сплошной среды трубки тока (а также линии тока) не могут ни начинаться, ни заканчиваться.


1.4. Безвихревое и вихревое движение


Движение сплошной среды в некоторой области называется безвихревым, если в ней = 0, и вихревым, если № 0 хотя бы в части этой области, называемой вихрем.

Из определения (1.6) следует, что вихревое движение характеризуется наличием вращения каждой частицы. Этот факт иллюстрируется рис. 1, на котором крайние точки бесконечно малой частицы среды имеют разные скорости в силу наличия ненулевой величины . Если центр этой частицы покоится, а все другие частные производные скорости равны нулю, то очевидно, что  № 0 характеризует именно вращение бесконечно малой частицы среды. В безвихревом движении такого вращения нет и каждая частица среды совершает лишь поступательное движение. Вообще говоря, вихревое движение возникает в реальной природе, благодаря наличию границ (свободной поверхности, твердых стенок или твердых тел), а также явлению вязкости.

Примерами безвихревого движения могут служить:

— состояние покоя среды,

— поступательное движение,

— источник и сток (когда частицы среды выходят из точки или входят в нее строго по лучам),

— движение среды вокруг некоторого кругового цилиндра по концентрическим окружностям со скоростью, обратно пропорциональной расстоянию от оси цилиндра.

Примерами вихревого движения могут служить:

— плоский сдвиг (когда скорость частиц вдоль некоторой плоскости пропорциональна расстоянию от этой плоскости),

— вращение среды вокруг некоторой оси, как твердого тела (в отличие от потенциального движения аналогичной геометрии в этом случае скорость с удалением от оси линейно возрастает!).


2. ДИНАМИКА СПЛОШНОЙ СРЕДЫ


2.1. Силы и моменты в механике сплошной среды


Силы, распределенные по объему W, называются объемными или массовыми. Они обозначаются и относятся к элементу массы Dm = rDW. Т.е. сила, действующая на элемент массы, равна Dm = rDW, следовательно, размерность совпадает с размерностью ускорения. Примерами массовых сил могут служить гравитационные, электромагнитные, инерционные.

Силы, распределенные по поверхности S, называются поверхностными. Поверхностные силы будем обозначать вектором и относить к элементу поверхности DS сплошной среды. Т.е. имеет размерность давления. Такие силы возникают, например, на свободной поверхности среды, при взаимодействии среды с твердыми телами, а также внутри среды (внутренние поверхностные силы).

Внутренние поверхностные силы необходимо рассматривать при изучении движения отдельных частиц среды с учетом их механического влияния друг на друга. Так, например, происходит при относительном движении двух соседних соприкасающихся частиц. Это явление может наблюдаться в любом месте сплошной среды, причем для бесконечно малых частиц поверхности соприкосновения dS можно построить любым образом. Тогда и , зависящее от такого выбора, можно определить по-разному в зависимости от dS, т.е. ориентации нормали этой площадки, поэтому такое взаимодействие обозначим вектором S. В силу третьего закона Ньютона на одну из пары соприкасающихся частиц действует сила SdS, на другую –SdS. Однако если соприкосновения нет, т.е. если движение имеет разрыв каких-то своих характеристик, то последнее условие может нарушаться.


Вектор S в общем случае не перпендикулярен к dS, поэтому различают нормальную составляющую pSn, называемую нормальным напряжением или нормальным давлением, и тангенциальную pSt, называемую касательным напряжением или внутренним трением: SdS = pSndS + pSttdS.

Свойство вектора S рассмотрим с помощью представления бесконечно малой частицы в виде тетраэдра с ребрами, параллельными осям координат (рис. 2). Площади граней такого тетраэдра равны S, SЧcos(,x), SЧcos(,y), SЧcos(,z).

Массовые силы будем считать постоянными во всем объеме W = hS/3 бесконечно малой частицы, а поверхностные силы 1, 2, 3, S постоянными на своих гранях. Это позволит применить к частице начало Даламбера из теоретической механики:

откуда, сократив на S, и перейдя к пределу при h ® 0, получаем инвариантное к выбору площадки равенство:

. (2.1)

Это означает, что существует некоторый объект P, компонентами

которого можно рассматривать векторы , или даже элементы матрицы (pij) – матрицы из компонент векторов . Объект P с компонентами pij называется тензором внутренних напряжений.

Равенство (2.1) позволяет применить теорему Остроградского-Гаусса (1.10) к расчету поверхностных сил:

(2.2)

Кроме сил на каждую частицу жидкости могут действовать и моменты. Примером может служить момент магнитного поля Земли, действующий на каждый элемент стрелки компаса. Такой момент, который действует на элемент массы Dm, будем обозначать . Его принято называть массовой парой (мас­совым моментом). Размерность совпадает с размерностью квадрата скорости.

Момент, который действует на элемент поверхности DS, будем обозначать . Он называется поверхностной парой (поверхност­ным моментом) и имеет размерность силы, деленной на длину.



Информация о работе «Полные лекции по аэродинамике и динамике полета. Часть 1»
Раздел: Авиация и космонавтика
Количество знаков с пробелами: 21188
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
26681
0
0

... на каждом флоте по две авиационные бригады и по несколько отдельных эскадрилий. Авиация Северного флота имела к началу войны 116самолетов, а Тихоокеанского флота –1183самолета. В общем морская авиация имела: 45%истребителей, 25%самолетов-разведчиков, 14%бомбардировщиков и 10%торпедоносцев. Надо признать, что значительная часть самолетов была устаревшей конструкции. Уже в ходе войны авиация ВМФ ...

Скачать
23459
55
11

... (3.2) Здесь L- момент импульса твердого тела относительно некоторой точки, - суммарный момент внешних сил относительно той же самой точки. К уравнениям (3.1) и (3.2), являющимся уравнениями динамики твердого тела, необходимо дать следующие комментарии: 1. Внутренние силы, как и в случае произвольной системы материальных точек, не- влияют на движение центра масс и не могут изменить ...

Скачать
138834
5
6

... аэродинамики, такие,как Н. Е. Жуковский, С. А. Чаплыгин, Б. Н. Юрьев, В. В. Голубев, М. В. Келдыш, С. А. Христианович, Г. П. Свищев, В. В. Струминский и многие другие, находились во главе прогресса авиации. Трудность прикладного использования теоретических исследований состояла в том, что теоретические решения могли быть найдены только для отдельных форм профилей, крыльев, тел вращения. Это ...

Скачать
118786
4
0

праведливы соотношения ... Пусть высота тетраэдра равна ... . Тогда его объём равен ... . Воспользуемся вторым законом Ньютона и со- ставим уравнение движения тетраэдра: ... ... где ... - ускорение центра масс тетраэдра. Переходя к пределу (устремляя ... ), получим ... Получим формулу Коши, утверждающую, что напряжения на гранях образуют систему взаимно уравновешенных ...

0 комментариев


Наверх