1.4.1 Корневые критерии заключаются в вычислении корней

характеристического полинома замкнутой системы.

1.4.2 Алгебраические критерии устойчивости не требуют выполнения вычислительной процедуры определения корней характеристического уравнения и при относительно невысоких порядках дифференциальных уравнений (до 15-го) позволяют находить условия устойчивости автономных замкнутых систем.

А(s)=ansn + an-1sn-1+ an-2sn-2+…+a0. (1.11)

Критерий Гурвица. Корни характеристического уравнения (1.11) n-го порядка будут иметь отрицательные действительные части, если составленный из его коэффициентов аi> 0 определитель

(1.12)

и все его диагональные миноры

(1.13)

положительны.

Критерий Рауса. Зная коэффициенты характеристического уравнения, составляют таблицу Рауса(табл. 1.1). Для того чтобы замкнутая система была устойчива асимптотически, необходимо и достаточно, чтобы все коэффициенты Рауса первого столбца таблицы при аi>0 были положительны, т.е. сi,1>0 (i=1,2,…). Для вычисления элементов табл. 1.1 можно использовать следующие рекуррентные формулы:

для первой строки таблицы

 

(1.14)

для второй строки таблицы

(1.15)

для остальных строк

(1.16)


Таблица 1.1

Номера строк Номера столбцов
1 2 3 ……. I
Коэффициенты с четными индексами

а0

а2

а4

…….
Коэффициенты с нечетными индексами

а1

а3

а5

……..
1

С11

С12

С13

……..

С1i

2

С21

С22

С23

……..

C2i

…. …… ….. ….. ……. ……
к

Ск1

Ск2

Ск3

……..

С

 

Критерий Шур-Кона. Данный критерий позволяет анализировать устойчивость дискретных и дискретно-непрерывных систем по характеристическому полиному замкнутой системы, записанному в форме z-преобразования. Для уравнения n-го порядка имеем

A(z)=anzn+ an-1zn-1+ an-2zn-2+…+a0. (1.17)

По уравнению запишем коэффициенты в виде определителя

(1.18)

где k=1,2,…,n; a*- сопряженные значения тех же коэффициентов.

Корни характеристического уравнения (1.18) будут находиться внутри единичной окружности, если коэффициенты уравнения (1.17) удовлетворяют всем определителям Шур-Кона, имеющего Dk< 0 - для нечетных k и Dk > 0 для четных k. В этом случае система будет устойчива

Критерий Кларка. Представляет собой совокупность 3-х необходимых условий, и лишь выполнение всех этих условий является условием устойчивости системы:

1. А(1) > 0

2. (-1)А(-1) > 0

3. Необходимо вычислить определители матриц D+ и D- , а также их внутренние матрицы. Внутренние матрицы получаются из исходных вычеркиванием окаймляющих строк и столбцов. Количество условий устойчивости зависит от порядка системы.

D+=Cn-1+Bn-1; D-=Cn-1-Bn-1; (1.19)

(1.20)

Система устойчива, если определители матриц D+  и D- , а также всех её внутренних матриц положительны. Система не устойчива, если не выполняется хотя бы одно из условий устойчивости Кларка.
Информация о работе «Системы стабилизации и ориентации»
Раздел: Авиация и космонавтика
Количество знаков с пробелами: 26620
Количество таблиц: 1
Количество изображений: 17

Похожие работы

Скачать
175590
30
100

... , может приводить к большим потерям рабочего тела и раскрутке космического аппарата до недопустимых угловых скоростей. Таким образом разработка алгоритмов контроля и диагностики системы управления ориентацией космического аппарата – является актуальной задачей. В настоящей работе решается задача построения алгоритмов контроля и идентификации отказов командных приборов и исполнительных органов. ...

Скачать
307812
16
17

... процессов. Формирование институтов согласования интересов хозяйствующих субъектов на основе осуществления медиаторской деятельности, выступающей механизмом обеспечения институциональной устойчивости социально-экономической системы, наиболее значимо для экономических систем регионального уровня, что определяется спецификой организационно-управленческих связей хозяйственных образований данного ...

Скачать
364011
22
0

... — практической специализации, в процессе которой студенчество получает профессиональное образование, ибо оно послужит ему в дальнейшем в деле адаптации и социализации. 2. Особенности формирования ценностных ориентаций студенчества в КНР и России: сравнительный анализ 2.1 Содержание реформ: политические, экономические и социальные изменения в России и КНР 2.1.1 Содержание и итоги реформ ...

Скачать
74572
0
2

... поиск должен быть одним из важнейших ориентиров при формировании современной программы исследования космического пространства. Информация о реликтовом веществе в начальный период образования Солнечной системы будет способствовать углублению наших знаний о больших планетах, которые сформировались из мельчайших небесных тел, содержавших данное вещество. Таким образом, химический и физический анализы ...

0 комментариев


Наверх