1. Предельные состояния первой группы


Плиту рассматриваем как свободно лежащую на двух опорах балку П-образного поперечного сечения, которое приводится к тавровому сечению с полкой в сжатой зоне. Находим расчётный пролёт плиты, принимая ширину опоры 10см:

Максимальный изгибающий момент:

где - номинальная ширина панели(расстояние в осях) 3(м), (сбор нагрузок). Ширина свеса полки в каждую сторону от ребра не должна превышать половины расстояния в свету между соседними рёбрами и 1/6 пролёта рассчитываемого элемента. При расчётная ширина полки в сжатой зоне: .

Рабочая высота ребра: .

Для установления расчётного случая таврового сечения проверим условие, считая

Условие соблюдается, следовательно, нейтральная ось проходит в пределах сжатой полки т.е. . Определим положение границы сжатой зоны:

Предварительные напряжения следует назначать с учётом допустимых отклонений значения предварительного напряжения таким образом, чтобы выполнялось условие: , где (т.к. механический способ натяжения арматуры).

Т.к. то должно быть умножено на коэффициент

Вычисляем площадь сечения растянутой арматуры:

Принимаем


Расчёт по наклонному сечению


Расчёт на действие поперечной силы:

Проверим необходимость постановки хомутов:

Определим длину проекции наиболее опасного наклонного сечения:

Условие выполняется.


Расчёт на действие изгибающего момента:

Т.к. у продольной арматуры отсутствует анкеровка, то принимают сниженным.

Условие выполняется. Прочность по наклонной трещине обеспечена.


2. Предельные состояния второй группы


Определение геометрических характеристик приведённого сечения.

Статический момент площади приведённого сечения относительно нижней грани:

Расстояние от нижней грани до центра тяжести приведённого сечения:

, то же до верхней ,

где .

Момент инерции приведённого сечения:

.

Момент сопротивления приведённого сечения относительно нижней грани:

,

то же по верхней зоне .

; ,

где - для тавровых сечений с полкой в сжатой зоне.

Расстояния от верхней и нижней ядровой точек до центра тяжести приведённого сечения, где

.


Определим потери предварительного напряжения арматуры.


Первые потери:

от релаксации напряжений а арматуре

от температурного перепада(при )

от деформации анкеров, расположенных у натяжных устройств

,где

- длина натягиваемого стержня.

Потери от быстронатекающей ползучести бетона, подвергнутого тепловой обработке, при

, где

Первые потери напряжений: .


Вторые потери:

от усадки бетона

от ползучести бетона при , для бетона подвергнутого

тепловой обработке при атмосферном давлении

, где .

Вторые потери напряжений: .

Общие потери предварительного напряжения арматуры:

.

Равнодействующая сил обжатия с учётом всех потерь и точности натяжения , где .


Расчёт по деформациям (определение прогибов).


Вычисляем момент, воспринимаемый сечением нормальным к продольной оси элемента, при образовании трещин:

Следовательно трещины в растянутой зоне образуются. Необходим расчёт по раскрытию трещин.


Расчёт по раскрытию трещин, нормальных к продольной оси элемента.

Предельная ширина раскрытия трещин:

непродолжительная

продолжительная

Изгибающий момент от нормативных нагрузок: постоянной и длительной

; суммарной . Приращения напряжений в растянутой арматуре от действия постоянной и длительной нагрузок:

, где т.к. усилие обжатия Р приложено в центре тяжести площади нижней напрягаемой арматуры; ; .

Приращения напряжений в растянутой арматуре от действия полной нагрузки:

.

Ширину раскрытия трещин от непродолжительного действия всей нагрузки:

,

где

Ширину раскрытия трещин от непродолжительного действия постоянной и длительной нагрузки:

Ширину раскрытия трещин от действия постоянной и длительной нагрузок:

Непродолжительная ширина раскрытия трещин:

Продолжительная ширина раскрытия трещин:

Расчёт прогиба плиты:


Прогиб определяем от нормативного значения постоянной и длительных нагрузок; предельный прогиб составляет = 587/200 = 2.94(см). Вычисляем параметры, необходимые для определения прогиба плиты с учётом трещин в растянутой зоне. Заменяющий момент равен изгибающему моменту от постоянной и длительной нагрузок ; суммарная продольная сила равна усилию предварительного обжатия с учётом всех потерь и при ; ; эксцентриситет ; коэффициент - при длительном действии нагрузки.

Вычислим кривизну оси при изгибе:

Вычислим прогиб плиты:


3. Расчёт плиты в стадии изготовления.


Проверка прочности:

, где


Нагрузка от собственного веса плиты шириной 3(м): .

, где взято для В21.

, принято конструктивно.
Проверка трещиностойкости:

Следовательно трещины образуются.


Т а б л и ц а р а с ч ё т н ы х у с и л и й .


Сечение

Усилие

Постоянная нагрузка

Временные нагрузки

I сочетание

II сочетание

Снеговая на покрытии пролёта

Dmax по оси Б в пролёте АБ

Dmax по оси Б в пролёте БВ

H по оси Б

Ветер слева

Ветер справа

Mmax Nсоотв

Mmin Nсоотв

Nmax Mсоотв

Mmax Nсоотв

Mmin Nсоотв

Nmax Mсоотв

АБ

БВ

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

M

-12

-383

383

0

0

0

0

0

3-5

3-4

3-4

3-5

3-4

3-4

263

-503

-503

2247

-4647

-4647

N

41432

19152

19152

0

0

0

0

0

60584

60584

60584

587

587

587

2

M

-485

-155

155

8273

-8273

 685

114

114

3-6-8

3-7-8

3-4

3-5-6-8-9

3-4-7-8

3-4-5

8473

-9443

-2035

100

-9942

-485

N

43942

19152

19152

0

0

0

0

0

43942

43942

631

612

612

78415

3

M

-485

-155

155

-1048

1048

 685

114

114

3-7-8

3-6-8

3-6

3-5-7-8-9

3-4-6-8

3-4-5-6

1068

-1165

-10965

11984

-1193

-9917

N

545

19152

19152

250

250

0

0

0

795

795

795

94237

94237

111474

4

M

792

253

-253

4326

-4326

 11

318

318

3-6-8

3-7-8

3-7-8

3-4-6-8-9

3-5-7-8

3-4-5-6

6218

-4634

-4634

10814

-637

4685

N

624

19152

19152

250

250

0

0

0

874

874

874

102137

102137

1194

Q

188

6

-6

188

-188

 233

3

3

61

233

233

1377

-731

357


Исходные данные для проектирования.


Ширина пролёта – 24(м)

Шаг рам – 6(м)

Грузоподъёмность крана – 20(т)

Режим работы крана – лёгкий

Длина здания – 192(м)

Место строительства – город Пермь

Расчётная колонна - по оси А

Агрессивность среды – неагрессивная


Т а б л и ц а р а с ч ё т н ы х у с и л и й .


Сечение

Усилие

Постоянная нагрузка

Временные нагрузки

I сочетание

II сочетание

Снеговая на покрытии пролёта

Dmax по оси Б в пролёте АБ

Dmax по оси Б в пролёте БВ

H по оси Б

Ветер слева

Ветер справа

Mmax Nсоотв

Mmin Nсоотв

Nmax Mсоотв

Mmax Nсоотв

Mmin Nсоотв

Nmax Mсоотв

АБ

БВ

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

M

-12

-383

383

0

0

0

0

0

3-5

3-4

3-4

3-5

3-4

3-4

263

-503

-503

2247

-4647

-4647

N

41432

19152

19152

0

0

0

0

0

60584

60584

60584

587

587

587

2

M

-485

-155

155

8273

-8273

 685

11324

11324

3-9

3-7-8

3-4

3-5-6-8-9

3-4-7-8

3-4-5

112755

-9443

-2035

1109

-9942

-485

N

43942

19152

19152

0

0

0

0

0

43942

43942

631

612

612

78415

3

M

-485

-155

155

-1048

1048

 685

11324

11324

3-9

3-6-8

3-6

3-5-7-8-9

3-4-6-8

3-4-5-6

112755

-1165

-10965

1129

-1193

-9917

N

545

19152

19152

250

250

0

0

0

545

795

795

94237

94237

111474

4

M

792

253

-253

4326

-4326

 11

3159

3159

3-9

3-7-8

3-7-8

3-4-6-8-9

3-5-7-8

3-4-5-6

3167

-4634

-4634

292262

-637

4685

N

624

19152

19152

250

250

0

0

0

624

874

874

102137

102137

1194

Q

188

6

-6

188

-188

 233

298

298

300

233

233

27927

-731

357


Информация о работе «Железобетонные конструкции»
Раздел: Архитектура
Количество знаков с пробелами: 33842
Количество таблиц: 12
Количество изображений: 203

Похожие работы

Скачать
35766
1
11

... , приближающийся по распределению внутренних усилий к системе пологих оболочек, что побудило отдельных авторов так именно её и рассматривать. Работы А. Ф. Лолейта по теории и практике строительства безбалочных перекрытий имели не только решающее значение в развитии этих конструкций, но послужили толчком к решению других сложных теоретических и практических задач. В ту пору, когда методы расчета ...

Скачать
19576
1
4

... башни, промышленные трубы большой высоты, реакторы атомных электростанций и др.). В современной строительной практике ряда капиталистических стран (США, Великобритании, Франции и др.) монолитные железобетонные конструкции получили широкое распространение, что объясняется главным образом отсутствием в этих странах государственной системы унификации параметров и типизации конструкций зданий и ...

Скачать
103427
25
24

... 1991. - 767 с. 7.  Бондаренко В.М., Римшин В.И. Примеры расчёта железобетонных и каменных конструкций: Учеб. пособие. - М.: Высш. шк., 2006. - 504 с. 8.  Тимофеев Н.А. Проектирование несущих железобетонных конструкций многоэтажного промышленного здания: Метод. указания к курсовой работе и практическим занятиям для студентов спец. "Строительство ж. д., путь и путевое хозяйство". - М.: МИИТ, 2004. ...

Скачать
35029
2
5

... стержней слева 2Ø28 А300: 504 мм < 20d = 560 мм справа 2Æ36 A-II (А300) 629 мм < 20d = 720 мм Принято W1= 500 мм; W2 = 550 мм; W3 = 600 мм; W4 = 750 мм. 6. Расчет сборной железобетонной колонны Сетка колонн  м Высота этажей между отметками чистого пола – 3.3 м. Нормативное значение временной нагрузки на междуэтажные перекрытия 8.5 кH/м2, расчетное значение ...

0 комментариев


Наверх