ОГЛАВЛЕНИЕ

1.    Введение

2.    Архитектурно-конструктивная часть

3.    Расчетно-конструктивная часть

4.    Производственно-строительная часть

5.    Подбор башенного крана

6.    Стройгенплан

7.    Календарный план

8.    Экономическая часть

9.    Технико-экономические показатели

10.   Литература

РАЗВИТИЕ МОНОЛИТНОГО ДОМОСТРОЕНИЯ

Основным направлением развития массового жилищного строительства является сборное, панельное домостроение. Однако более 35% объемов жилищного строительства осуществляется еще недостаточно индустриальными методами. Поэтому индустриальные методы монолитного домостроения рассматриваются как резерв повышения общего уровня дальнейшей индустриализации строительства. Производственный эксперимент по применению различных конструктивно-технологических методов монолитного домостроения позволил сформировать теоретические основы рациональных сфер применения монолитного бетона, технических решений конструкций зданий и опалубок, а также разработать ряд нормативных и методических документов по проектированию, строительству и сравнительной технико-экономической оценке гражданских зданий из монолитного бетона.

Возведенные жилые и гражданские здания, как правило отличавшиеся высоким качеством архитектурных решений. Наибольшее распространение монолитное домостроение получило в Кишиневе, Сочи, Алма-Ате, Минске, Вильнюсе, городах Кавказских минеральных вод, Южного берега Крыма, Средней Азии и др. Анализ показал, что монолитное домостроение по большинству технико-экономических показателей имеет преимущества по сравнению с кирпичным домостроением, а в ряде случаев и с крупнопанельным: единовременные затраты на создание производственной базы меньше, чем в кирпичном на 35% и чем в крупнопанельном на 40-45%; расход стали в конструкциях снижается на 7-25% по сравнению с крупнопанельным (экономия увеличивается по мере повышения этажности и сейсмической активности района строительства); расход стали на опалубку с учетом оборачиваемости форм снижается на 1,5 кг на 1м2 общей площади в сборных конструкциях до 1 кг в монолитных. Энергетические затраты на изготовление и возведение монолитных конструкций уменьшается на 25-35% по сравнению со сборными и кирпичными: трудовые затраты снижаются в среднем на 25-30%, а продолжительность строительства сокращается на 10-15% по сравнению с кирпичным. Стоимость строительства с учетом зданий по этажности, архитектурно-планировочным решением и действующих чем на материалы и конструкции в среднем на 10% ниже, чем кирпичного, и на 5%, чем крупнопанельного.

К достоинствам монолитного домостроения следует также отнести возможность с минимальными затратами получить разнообразные объемопространственные решения, повысить эксплуатационные качества зданий. При этом сокращается инвестиционный цикл (проектирование зданий и производственной базы – создание базы – строительства).

Недостатками монолитного домостроения являются более высокая по сравнению с крупнопанельным продолжительность строительства (20%) и трудоемкость на строительной площадке (25-30%) при одинаковых показателях суммарных трудовых затрат, удорожание бетонных работ при отрицательных температурах.

Рациональными областями применения монолитного домостроения являются регионы со сложными геологическими условиями, преимущественно в южных сейсмических районах страны.

основные направления повышения эффективности возведения монолитных конструкций.

Основные направления развития технологии бетонных работ должны предусматривать мероприятия, которые позволили бы значительно повысить производительность труда на этих работах:

-  организацию централизованных изготовления сварных арматурных каркасов, сеток, и пространственных блоков и монтаж их на стройплощадках;

-  применение унифицированных многократно оборачиваемых систем опалубок, организацию централизованного их изготовления и интенсивной эксплуатации;

-  развитие индустрии товарных бетонных смесей путем организации их централизованного изготовления на высокомеханизированных и автоматизированных районных приобъектных заводах и установках с доставкой этой смеси специализированным транспортом;

-  механизацию подачи распределения и укладки бетонной смеси с применением высокопроизводительных бетононасосов, бетоноукладчиков и другой техники;

-  применение технологии зимнего бетонирования с использование эффективных противоморозных добавок, автоматизацию процессов термообработки бетона.

Комплекс работ по возведению монолитных бетонных и ж/б конструкций включает ряд процессов, в том числе приготовления бетонной смеси, транспортировку ее к месту укладки, устройство опалубки, установку арматуры, подачу, распределение и уплотнение бетонной смеси в подземных и наземных частях зданий, подготовку забетонированных конструкций к сдаче.

общие сведения о районе строительства

Жилой 16-ти этажный монолитный дом строится в г. Рязани. Преобладают северо-восточные ветра (см. раздел ветров на генплане).

Расчетные температуры воздуха: t внутреннего +18°; t наружного -26°.

Источники водоэнергоснабжения: водоснабжения – от ввода в ЦТП, энергоснабжения – от трансформаторной подстанции кабелем марки АПВ-380. Напряжение 380/220 В.

Поставка материалов и оборудования со стороны существующих дорог (см. генплан).

архитектурно-планировочное решение.

16-ти этажный монолитный жилой дом запроектирован с подвалом высотой 2м и чердаком. Высота жилого этажа 2,8м (от пола до пола).

На каждом жилом этаже запроектировано 5 квартир:

-              однокомнатных – 1

-              двухкомнатных – 3

-              трехкомнатных – 1

Площади квартир в пределах норм для города Рязани. Квартиры имеют холлы, кухни, санузлы. В доме предусмотрено кухонное и санитарно-техническое оборудование. В 1-ом этаже запроектированы вестибюли, электрощитовая и мусорокамеры.

Запроектированы незадымляемые, несгораемые лестницы с закрывающей пружиной, запроектирован тамбур.

Все квартиры запроектированы с раздельными санузлами (кроме однокомнатных). В доме запланировано 1 пассажирский лифт грузоподъемностью 350 кг и 1 грузопассажирский лифт грузоподъемностью 500 кг.

Мусоропровод d=400мм с клапанами. Мусоросборная камера расположена на 1-ом этаже, с выгрузкой мусора в сторону двора.

Окна – стандартные.


Архитектурно-строительный раздел.

16-ти этажный жилой дом в сборно-монолитном исполнении строится в г. Рязани. Согласно СНиПу «Нагрузки и воздействия» относится

- к III снеговому району (S0 = 1,0кПа)

- к I ветровому району (W0 = 0,23кПа)

Здание строится в обычных условиях строительства.

Фундамент. Вариант монолитной ребристой плиты разработан в условиях посадки здания на однородные непросадочные и ненабухающие грунты с несущей способностью основания Rc=2кг/см2 с осадкой фундамента не более 10см. Толщина плиты 700мм, высота ребра 1500мм.

Стены. Внутренние стены выполнены из монолитного тяжелого бетона класса В15. Армирование стен осуществляется при помощи каркасов и сеток. Каркасы устанавливаются по краям стен, обрамляют проемы и устанавливаются в стенах с шагом не более 2,2м. Перемычки стен – монолитные, рассчитаны с учетом трещиностойкости (шарнир). Армируются пространственными каркасами. Стены несущие наружные стены выполнены из крупнопористого керамзитобетона класса В-75, толщиной 350мм. Стены несущие, связаны шарнирно с внутренними. Армирование стен конструктивное – каркасами и сетками.

Перекрытия. Сборные из плит перекрытия круглопустотных по серии 1.141.-1, выпуски 9, 10, 12, 15 с изменениями опорной части и индивидуальной плиты. Связь плит со стенами осуществляется при помощи соединительных стержней, приваренных к петлям плит (рис.1).

Сборные ж/б элементы.

 

Перегородки – индивидуальные сборные ж/б из тяжелого бетона класса В-15 толщиной 80мм.

Элементы ограждения лоджий – индивидуальные, выполнены из тяжелого бетона класса В-15 толщиной 120мм. Крепление элементов осуществляется путем приварки их к закладным деталям плит лоджий и наружных стен.

Лестничные марши – по серии 1.151-1В6. Площадки – индивидуальные устанавливаются на столбики, которые крепятся к закладным деталям стены.

Лифт – принято 2 лифта: пассажирский из сборных ж/бетонных элементов по серии 1.189-6 и грузопассажирский из сборных ж/б …?... элементов.

Соединение сборных ж/б элементов – шарнирное.

Санкабины – сборные по серии 1.188-5В10.

Вентблоки – индивидуальные на основе серии 1.В4-3.

Плиты лоджий – индивидуальные сборные t=160мм.

 

Наружная отделка.

Фасады и входы в жилые секции монолитные с облицовкой. Входы в жилые секции с установкой алюминиевых витражей, деревянных дверных и оконных блоков.

Наружные стены монолитные. Ограждения лоджий из индивидуальных скорлуп.

Металлические элементы ограждений лоджий, окна и балконные двери окрашиваются масляной краской белого цвета.

Потолки лоджий окрашиваются красками ПХВ белого цвета.

Внутренняя отделка помещений.

Жилые комнаты: полы из штучного букового паркета, стены оклеиваются обоями, потолки окрашиваются клеевой краской.

Кухни: полы линолеумные. Стены окрашиваются масляной краской на всю высоту с облицовкой вдоль фронта кухонного оборудования – глазурованной плиткой на высоту 2 м, а выше масляная покраска.

Лифтовые холлы и вестибюли: полы керамические из крупноразмерной плитки с фактурой «мелкография».

Стены на всю высоту облицовываются керамической плиткой «кабанчик» с рисунком.

Вестибюль: потолки – клеевая окраска.

Решение по инженерным сетям, коммуникациям и инженерному оборудованию здания.

Отопление и вентиляция.

Расчетные параметры наружного воздуха для проектирования приняты:

- для систем отопления - 26°С

- для систем вентиляции - 26°С (зима)

22°С - 33°С (лето)

Расчетная скорость ветра – 5 м/сек.

Предположительность отопительного периода – 213 дней.

Расчетный коэффициент теплопередачи К=0,9 стены ограждающих конструкций.

Тройное окно – 3Ккал/час м2°С= 3,48 Вт/м2°С.

Двери - 2Ккал/час м2°С= 2,32 Вт/м2°С.

Чердачного перекрытия – 0,696 Вт/м2°С.

Источником теплосистем отопления и вентиляции является тепловая сеть.

Изоляция труб и воздухоотводов.

Тепловая изоляция осуществляется минеральной ватой в качестве покровного слоя и используется рулонный стеклопластик. Изоляции подлежат трубопроводы, подающие системы отопления и теплоснабжения.

Основные решения по теплоснабжению.

Источниками тепла РТС.

Расчетные t теплоносителя: t1 = 150°С, t2 = 70°С.

Теплоснабжения осуществляется по закрытой схеме.

Система отопления присоединяется к тепловым сетям по независимой схеме через водонагреватели отопления в существующем ИТП.

Водоснабжение, канализация, газоснабжение.

Водоснабжение обеспечивается от насосов в существующем ИТП. Водомерный узел размещается в ЦТП сущ. В здании проектируются 2 заводомерных ввода 2d=100 из чугунных водопроводных труб.

Разводящие трубопроводы прокладываются с уклоном не менее 0,002 к подвалу.

Принятые нормы водопотребления.

Жилая часть

Нормальный расход хоз. питьевой воды (общий) на одного жителя 1/сут. Работающего

Максимально-суточный расход горячей воды на 1-го жителя, работающего 1/сут.

Расход воды в часы наибольшего водопотребления (общий) 1/час.

3,00

120

20 х.в.

10,9 г.в.

Расчетные расходы холодной и горячей воды потребителями на хозяйственно-питьевые нужды, расход тепла на горячее водоснабжение в соответствии с СНиП 2.04.01.85.

Расход горячей воды – 3,15 л/сек.

Расход тепла на горячее водоснабжение 0,460 Ккал/час.

Потребный напор: М холл.=52м; М гор.=54м.

Основные технические решения по горячему водопроводу.

Вода для кухни горячего водоснабжения приготавливается в скоростных водоводяных подогревателях. В здании проектируется централизованное горячее водоснабжение.

Разводящие трубопроводы прокладываются в подвале. Система проектируется из стальных оцинкованных труб ф 15-100мм.

Основные технические решения по канализации.

Для отведения вод от санитарно-технических приборов (унитазов, умывальников и др.) жилой части здания и нежилых помещений проектируется бытовая канализация.

Монтируются:

- стоянки из чугунных канализационных труб, трубопроводы по техподполью из чугунных труб.

Канализационные стоянки присоединяются к канализационной сети техподполья.

мероприятия по пожарной безопасности.

(выполняются в соответствии СНиП 2.01.02.85)

Степень огнестойкости здания №1. Здание обеспечено пожарными проездами со стороны главного фасада шириной 5м.

Лестницы выполнены незадымляемыми. Вход в них осуществляется с улицы, а выход на них через балконы.

Двери в лестничную клетку самозакрывающиеся. Открываются двери по ходу эвакуации.

Для удаления дыма из пожарных холлов и коридоров запланировано дымоудаление, оборудованное клапанами с автоматическим открыванием.

Незадымляемость шахт лифтов и коридоров обеспечивается подпором воздуха сверху. Проектом предусмотрено оборудование всех пожарных помещений автоматической пожарной сигнализацией и дымоудаления.

Также предусматривается выход на кровлю.

Проект разработан в соответствии с требованиями СниП 2-80; 2.01.02-85 «Противопожарные нормы проектирования зданий и сооружений».

Роза ветров г. Рязани

с св в юв ю юз з сз
Январь 7 5 8 15 17 23 14 11
июль 13 9 10 9 8 12 20 19

архитектурно-планировочное и конструктивное решения. Основные сведения по генплану.

Площадь застройки составляет 0,419га. Участок строительства внутри микрорайона, между улицей Волкова и Инициативная.

Рельеф участка имеет падение с запада на восток.

Рельеф участка с перепадом высот 1,0 м и падением горизонт. 0,1 м.

Находящиеся на участке жилые и нежилые строения подлежат сносу. Проектируемый рельеф, проезды, внутриквартальные и др. Элементы устройства решены в увязке с проектными отметками городских профилей и существующей городской застройкой. Благоустройство территории предусматривает детские и хозяйственные площадки, автостоянки, спортплощадки. Общая площадь благоустройства и земных насаждений 1,77га.

Инженерная подготовка территории включает высотную посадку здания, максимально приближенную к существующему рельефу.

Отвод дождевых и талых вод поверхностный в лотки внутриучастковых дорог со сбросом на ниже располагаемую территорию.

Дренаж не требуется, водосток открытый.

технический расчет стены монолитного дома.

Город Рязань характеризуется следующими климатическими данными:

Температура наиболее холодной пятидневки – (-31°С);

Температура наиболее холодных суток - (-35°С);

Расчетная внутренняя температура - (+18°С);

Для определения сопротивления теплопередачи наружных стен для зимнего времени принимаем ограждающие конструкции средними в соответствии со СНиП II-А-77. За расчетную принимаем температуру наиболее холодных суток (-35°С).

Наружные стены принимаем из керамзитобетона с объемным весом g=1200кг/м3.

Требуемое сопротивление определяем по формуле:

Roтр= (tв-tн)*Rвn , где

Dtн

tв = +18°С – температура внутреннего воздуха помещений

tн = -35°С – температура наиболее холодных суток

Dtн = 10°С – нормируемый температурный период

n = 1 – коэффициент, зависящий от положения наружных поверхностей ограждения по отношению к наружному воздуху и имеющие значение для наружных стен

Rв = 0,133 – сопротивление теплоотдаче, зависящей от рельефа внутренней поверхности ограждения

Roтр= (18-(-35))*0,133*1=0,705

10

Экономическое сопротивление теплопередаче определяем по формуле: Roэк= Wо*Цо

Е*p*Цм , где

Wо = 0,23

Цо = 5,39 руб/ккал – стоимость тепла от ТЭЦ для г. Рязани.

p = 0,4 – коэффициент теплопроводимости

Цм = 72,4 руб/м3 – стоимость материала

Roэк= 0,23 * 5,39 = 0,59

0,12*0,4*72,4

Roэк< Roтр

Толщину панели определяем по формуле:

Sц = (Ro – (Rв + Rм + d1/p1 + d2/p2) * l

S = (0,705 – (0,133 + 0,08)) * 0,4 = 0,341 (м)

Принимает стеновую керамзитобетонную стену d=350 (мм). Проверку правильности выбора расчетной наружной температуры производим по формуле:

D=R1S1 + R2S2 + … + RnSn

Техническое сопротивление керамзитобетонной стены:

S=7,95

Коэффициент теплоусваемости:

S=7,95

Тепловая инерция определяется:

D = 0,5 * 7,95 = 3,975

Так как 1<D<4, конструкция стены относится к группе стен малой массивности и поэтому расчетную зимнюю температуру принимаем средней из температур наиболее холодных суток.

tn = -35°С

Тогда Roтр= (18-(-35))*0,133=0,705 м2*г*град/ккал

10

Roэк=0,45 м2*г*град/ккал; Roэк< Roтр

Ro= Roтр=0,705 м2*г*град/ккал

S=(0,705-(0,133+0,08)) *0,7=0,341м ≈ 350 мм

Удовлетворяет теплотехническому расчету.

Расчет сборного железобетонного марша

 

Исходные данные для проектирования:

 

1.        Ширина марша – 1350мм.

2.        Высота этажа – 2800мм.

3.        Угол наклона марша α - 30˚.

4.        Размеры ступенек 150х300мм.

5.        Бетон класса В25.

6.        Арматура каркасов кл. А-II

сеток кл.Вр-I.

Определение нагрузок и усилий.

Собственный вес типовых маршей по каталогу индустриальных изделий для жилищного и гражданского строительства составляет gn=3,6км/м2 горизонтальной проекции.

Расчетная схема марша.

Временная нормативная нагрузка для лестниц жилого дома рн=3(км/м2) – коэффициент надежности по нагрузке

γf=1,2

- длительно действующая временная нагрузка Pldn=1 км/м2

Расчетная нагрузка на 1м длины марша.

g=(qn γf + pn γf) a = (3.6*1.1+3.0*1.2)*1.35 = 10.3км/м

Расчетный изгибающий момент в середине пролета марша.

М=gl2/8*Cosα = (10.3*2.8)2/2*0.867 = 16.63км

Поперечная сила на опоре.

Q= gl/2Cosα = 10,3*2,8/2*0,867 = 16,63км

Предварительное назначение размеров сечения марша.

Применительно к типовым заводским формам назначаем толщину плиты по сечению между ступенями hf=30мм, высоту ребер h=170мм, толщину ребер в2=80мм (рис.1)

1. Действительное сечение марша заменяем на расчетное тавровое с полкой в сжатой зоне (рис.2)

в=2в2=2*80=160мм

2. Ширину полки вf при отсутствии поперечных ребер принимаем не более

вf'=2(l/6) +в = 2 (280/6)+16 = 110см

или в'f=2hl'f+в = 12*3+16 = 52см

Принимаем за расчетное меньшее значение в'f=52см

Подбор площади сечения продольной арматуры.

1.        Устанавливаем расчетный случай для таврового сечения (при х= h'f)

- при м≤Rвyв2 вf' hf'*(h0-0.5 h'f)

- нейтральная ось проходит в полке 1164000<14,5*(100)*0,9*52*3*(14,5-0,5*3)=2640000(Н см) – условие удовлетворяется.

2. Расчет арматуры выполняем по формулам для прямоугольных сечений шириной в'f=52см

А0=Myn/Rв*yв2 в'fh02=1164000*0,95/14,5*(100)*0,9*52*14,52=0,0775

по таблице 2.12 находим

J=0,953

As= Myn/Jh0Rs = 1164000*0.95/0.953*14.5*280(100) = 2.858 (см2)

3.        Принимаем: 2ф14 (А-II); As=3,08 (см2)

В каждом ребре устанавливаем по одному плоскому каркасу К-1 (рис.3).

Расчет наклонного сечения на поперечную силу.

1. Поперечная сила на опоре

qмах = 16,63*0,95=16км

2. Вычисляем проекцию расчетного наклонного сечения на продольную ось «С»

Вв=φв2(1+φf+φn)*Rвt*yв2*l02, где

φn = 0

φf = 2* (0,75(3 h'f) h'f/вl0)=> 2 * (0,75(3*3)*3/16*14,5) = 0,175 < 0,5

(1+φf+φn)=1+0,175=1,175<1,5

Вв=2*1,175*1,05*0,9(100)*16*14,52=7,5*105 Н/см

Вывод: В расчетном наклонном сечении:

Qв=Qsw=Q/2, а так как Qв=Вв/2, то С= Вв/0,5Q

С=7,5*105/0,5*16000=93,75 см

что больше 2Н0=2*14,5=29см

тогда: Ав= Вв/С=7,5*105/29=25,9*105 (Н)

что больше Qмах=16км, следовательно поперечная арматура по расчету не требуется.

3. В ¼ пролета назначаем из конструктивных соображений поперечные стержни диаметром 6 мм из стали класса A-I, шагом S=80 мм (не более Н/2=170/2=85мм).

Asw=0,283см2, Rsw=175мПа

Для двух каркасов n=2, Asw=0,566 см2, MW=0,566/16*8=0,044

α=Es/Eв=2,1*105/2,7*104=7,75

В средней части ребер поперечную арматуру рассматриваем конструктивно с шагом 200мм.

4. Проверяем прочность элемента по наклонной полосе между наклонными трещинами:

Q=0,3φw1φв1Квyв2*в*n0, где

φw1=1+5 αMw=1+5*7,75*0,044=1,17

φв1=1-0,01*14,5*0,9=0,87

Q=16000<0,3*1,17*0,87*14,5*0,9*16*14,5(100)=93000Н

Вывод: условие соблюдается, прочность марша по наклонному сечению обеспечена.

Плиту марша армируем сеткой из стержней диаметром 4-6 мм, расположенных с шагом 100-300мм.

Плита монолитно связана со ступенями, которые арнируют по конструктивным соображениям, и ее несущая способность с учетом работы ступеней вполне обеспечивается.

расчет железобетонной площадочной плиты.

Исходные данные:

1.        Ширина плиты – 1350мм.

2.        Толщина плиты – 60мм.

3.        Ширина лестничной клетки – 3м.

4.        Временная нормативная нагрузка 3км/м2.

5.        Коэффициент надежности по нагрузке: yg=1,2.

6.        Бетон класса В-25.

7.        Арматура каркасов из стали кп А-II.

8.        Сетки из стали класса Вр-I.

Определение нагрузок.

1. Собственный нормативный вес плиты при hf=6см

gn=0,06*25000=1500Н/м2.

2. Расчетный вес плиты g=1500*1,1=1650 Н/м2.

3. Расчетный вес лобового ребра (за вычетом веса плиты)

g=(0,29*0,11+0,07*0,07)*1=25000*1,1=1000 Н/м.

4. Расчетный вес крайнего пристенного ребра

q=0,14*0,09*1*2500-1,1=350 Н/м.

5. Временная расчетная нагрузка:

р=3*1,2=3,6км/м2

При расчете плиты (площадочной) рассматривают раздельно полку, упруго заделанную в ребрах, лобовое реборо, на которое опираются марши и пристенное ребро, воспринимающее нагрузку от половины пролета полки плиты.

расчет полки плиты.

Полку плиты при отсутствии поперечных ребер рассчитывают как балочный элемент с частичным защемлением на опорах.

Расчетный пролет равен расстоянию между ребрами 1,13 (м). При учете образования пластического шарнира изгибающий момент в пролете и на опоре определяют по формуле, учитывающей выравнивание моментов

Т=М3=gl2/16=5250*1,132/16=420Нм, где

g=(g+p)*b=(1650+3600)*1=5250 Н/м; b=1м

При b=100см; и h0=h-а= b-2=4см

вычисляем:

А0=Myn/Rbyb2bh02=4200*0.95/14.5(100)*0.9*100*42=0.092

η=0.981

As=Myn/ η*h0*hs=4200*0.95/0.981*4*375(100)=0.27см2

Указываем сетку С-1 из арматуры d 3 мм, Вр-I шагом S=200мм на 1м длины с обгибом на опорах As=0,36см2

Расчет лобового ребра.

 Нагрузки, действующие на лобовое ребро:

1. Постоянная и временная равномерно распределенные от половины пролета полки и от собственного веса.

g=(1650+3600)*1,35/2+1000=4550 Н/м

2. Равномерно распределенная нагрузка от опорной реакции маршей, приложенная на выступ лобового ребра и вызывающая на изгиб

g1=Q/a=17800/1,35=1320 Н/м

Расчетная схема лобового ребра

3. Изгибающий момент на выступе от нагрузки g на 1м

М= g1 10+7/2=1320*17/2=11200 Нсм=112 Нм

4. Определяем расчетный изгибающий момент в середине пролета ребра (считая условно в ряду малых размеров, что g1  действует по всему пролету).

М=( g+ g1 )*l02/8=(4550+1320)*3,22/8=7550 Нм


Информация о работе «Строительство монолитного дома»
Раздел: Строительные науки
Количество знаков с пробелами: 53598
Количество таблиц: 12
Количество изображений: 0

Похожие работы

Скачать
35962
1
2

... конструктивных и экономических. Заключение В работе решены следующие работы: ·           Проведен обзор литературы по технологии монолитного строительства; ·           Рассчитаны экономические и экологические показатели от внедрения технологии монолитного возведения жилья; ·           Проведена оценка конкурентоспособности рассматриваемой технологии. Таким образом, по работе можно ...

Скачать
139798
14
4

... часть из которых не используется в производственном процессе. Проводился анализ и поиск возможности повышения отдачи от долгосрочных финансовых вложений. 3. Инвестиционный проект строительства жилого дома ОАО СК «Стройком» 3.1 Сущность проекта Цель проекта заключается в строительстве жилого дома. Для финансирования проекта планируется взять кредит в сумме 250 млн. рублей в банке «ВТБ ...

Скачать
171751
37
31

... системы трудовой мотивации и применяемых методов стимулирования труда. Целью данного дипломного исследования был анализ эффективности инвестиционного проекта строительства объекта гражданского назначения (жилого дома в Краснооктябрьском районе г. Волгограда ). Рынок жилья г. Волгограда характеризуется отставанием платежеспособного спроса от предложения, что связано с ростом стоимости ...

Скачать
40363
4
1

... -37-59. Группа компаний “Эгна” работает на нижегородском рынке 19 лет. В группу входят предприятия различных профилей: туристического и строительного. Сфера деятельности ООО "Эгна-Строй" – строительство жилых домов, офисных зданий в роли как заказчика, так и генподрядчика. Целью деятельности предприятия является хозяйственная деятельность, направленная на извлечение прибыли. Руководитель ...

0 комментариев


Наверх