3.2. Причины и последствия влияния засоления на растительные организмы.

Засоление приводит к созданию в почве низкого водного потен­циала, поэтому поступление воды в растение сильно затруднено. Важнейшей стороной вредного влияния солей является также на­рушение процессов обмена. Работами физиолога Б. П. Строганова показано, что под влиянием солей в растениях на­рушается азотный обмен, что приводит к интенсивному распаду белков, в результате происходит накопление промежуточных продуктов обмена веществ, токсически действующих на растение, таких как аммиак и другие, резко ядо­витые продукты. В условиях засоления отмечено образование таких токсичных продуктов, как кадаверин и путресцин, являющихся аналогами трупного яда 25. На фоне сульфатного засоления накапливаются продукты окисления серосодержащих аминокислот (сульфоксиды и сульфоны), которые также являются ядовитыми для растений. По­вышенная концентрация солей, особенно хлористых, может действо­вать как разобщитель процессов окисления и фосфорилирования и тем самым нарушать снабжение растений макроэргическими фосфор­ными соединениями. Под влиянием солей происходят нарушения ультраструктуры клеток, в частности изменения в структуре хлоропластов, происходит набухание гранул и ламелл у хлоропластов 18.

Наиболее устойчивыми к солям являются митохондрии. Однако солевой стресс может способствовать их набуханию, что сопровождается разобщением окислительного фосфорилирования и нарушением проницаемости мембран. Нарушение сопряженности окисления с фосфорилированием, в свою очередь, лишает растительный организм механизма аккумулирования энергии. При этом опасным для растительной клетки является то, что АТФ-азная активность переноса энергии меняет свое направление и из поставщика АТФ превращается в его потребителя. Таким образом, в растительном организме наступает «энергетический голод» 1. Особенно это проявляется при хлоридном засолении.

Показано неблагоприятное влияние ионов в повышенных концентрациях на число делящихся клеток в меристеме и их размеры, отмечено увеличение времени митотического цикла и метафазы 26.

Вред­ное влияние высокой концентрации солей связано с повреждением поверхностных слоев цитоплазмы, вследствие чего возрастает ее про­ницаемость, теряется способность к избирательному накоплению ве­ществ 1, 40. Соли поступают в клетки пассивно вместе с транспирационнным током воды. Поскольку в большинстве случаев засоленные поч­вы располагаются в районах, характеризующихся высокой летней температурой, интенсивность транспирации у растений очень высо­кая. В результате солей поступает много, и это усиливает поврежде­ние растений.

Надо учесть также, что на засоленных почвах большая концент­рация натрия препятствует накоплению других катионов, в том чис­ле и таких необходимых для жизни растения, как калий и кальций.

Снижение продуктивности растений в условиях хлоридного засоле­ния определяется угнетением их роста, который является интегральной характеристикой реакции растений на изменение окружающей среды. Степень угнетения растений и снижения биомассы находится в прямой коррелятивной зависимости or концентрации соли в суб­страте и продолжительности засоления 43. Однако прямая зависимость между накоплением ионов в расте­ниях и уровнем их солеустойчивости до сих пор не выявлена. Неясен вопрос о косвенном влиянии солей на рост растений. Некоторые авторы утверждают, что главной причиной замедления ростa расте­ний в условиях засоления следует считать не прямое влияние избытка солей в их тканях, а ослабление способности корней поставлять в побе­ги необходимые для их роста продукты метаболизма, т. е. замедление поступления питательных элементов из субстрата, угнетение их метаболизацни в корнях и транспорта в побеги. В частности, подчеркивается, что угнетение роста растений в начале онтогенеза является следствием торможения поступления и превращения отдельных элементов минерального питания 16, 38.

Определенный интерес представляет вопрос о различиях в уровне солеустойчивости разных органов растений. Отрицательное действие высокой концентрации солей сказывает­ся раньше всего на корневой системе растений. При этом в корнях страдают наружные клетки, непосредственно соприкасающиеся с раствором соли. Характерной особенностью корневых систем на почвогрунтах с глубинным засолением является их поверхностное распространение. Внезапное увеличение концентраций NaCI в среде приводит к скачкообразному увеличению ионной проницаемости корневой системы 4. Корни растений при избытке солей теряют тургор, отмирают и, ослизняясь, приобретают темную окраску.

Исследования 43 пока­зали, что корни более чувствительны к засолению, чем надземные ор­ганы. Однако известны и факты положительного влияния засоления субстрата на накопление массы корней при замедленном росте побегов [12].

Повреждающее действие засоления усиливается при недостаточной обеспеченности растении основными элементами минерального, питания, что, по-видимому, обусловлено угнетением корней. В то же время исследования поглощающей функции корней показали, что при засолении уменьшается их общая и рабочая адсорбирующая поверхность. Однако при этом возрастает отношение рабочей поглощающей поверх­ности к недеятельной [43]. Формирование целостной корневой системы растений при засолении изучено недостаточно и на ограниченном числе культур. К тому же полученные данные носят противоречивый харак­тер. В частности, у ячменя установлено уменьшение количества боковых корней и их длины, общего числа корневых волосков, тогда как у проростков кукурузы и ответ на угнетение главного корня увели­чивались число придаточных корней и их суммарная длина при значительном снижении сухой массы [12, 27].

В стебле наиболее подвержены действию солей клет­ки проводящей системы, по которым раствор солей поднимается к надземным органам 48. При натриево-хлоридном засолении побеги короткие, быстро заканчивают свой рост.

Листья также в значительной мере чувствительны к засолению. Общей реакцией для многих сельскохозяйственных культур является отмирание нижних листьев (особенно у кукурузы), подсыхание кончиков листьев. Для томата характерно изменение окраски листьев от темно-зеленой к светло-зеленой с желтым оттенком — явный признак солевого повреждения.

Важное значение для жизнедеятельности растений в условиях засоления имеет изменение водно-осмотического режима, особенно степень осморегуляцин растений. У растений, выращиваемых на засоленном субстрате, во всех орга­нах увеличивается осмотический потенциал клеточного сока, а осмотический градиент между листьями и корнями по мере увеличения засоления возрастает. В основном это обусловлено накопле­нием в клетках повышенных количеств осмотически активных гидрофильных ионов солей. Как считают исследователи [11, 18, 47], причиной увеличения осмотического потенциала клеточного сока является также повышение концентрации в клетке низкомолекулярных органических со­единении, обусловленное изменениями реакций метаболизма. Многие авторы придерживаются мнения, что повышение осмотического потен­циала клеточного сока растений является защитно-приспособительной реакцией в условиях засоления.

С увеличением концентрации соли наблюдается тенденция к снижению суккулентности растений, что свидетельствует о подавлении способности к осморегуляции. То есть с увеличением концентрации хлорида натрия растения теряют спо­собность сохранять оводненность органов и это отрицательно сказывается на их солеустойчивости. Но в то же время разные виды растений обладают различной способностью регулировать содер­жание воды в своих тканях. Так С3 растения регулирует со­держание воды в своих органах хуже, чем С4 17.

У культурных растений при произрастании на засолен­ной почве заметным изменениям подвержено также и микроскопическое строение вегетативных органов. Исследования, проведенные Чухлебовой и Беловоловой, показали, что на засоленной почве диаметр корней кукурузы уменьшился в 1,2 раза. Клетки экзодермы и мезодермы первичной коры обнару­живали мелкоклеточность в сравнении с корнями контрольных рас­тений. При этом количество клеток первичной коры не изменялось, а сокращение диаметра происходило за счет мелкоклеточности. Заметным изменениям подвергается строение центрального цилинд­ра. Они заключаются в изменении диаметра, сокращении количе­ства лучей ксилемы и пропускных клеток в эндодерме.

У опытных растений, испытывающих недостаток влаги в силу высокого осмотического потенциала засоленной почвы, наблюда­ется увеличение количества волосков в зоне всасывания почти в 2 раза.

Фактор засоленности почвы обуславливал уменьшение листовой пластинки в 1,4 раза, увеличение количества проводящих пучков и снижение числа обкладочных клеток. В клетках мезофилла растений засоленного фона при глазо­мерной оценке обнаруживалось увеличение количества хлоропластов, а также отмечалось большее количество моторных клеток, характеризующих изменение структур листа в сторону ксерофитности. Размеры моторных клеток уменьшаются в 2,3 раза. В зоне расположения моторных клеток у растений, ис­пытывающих засоление, уменьшается число обкладочных клеток, являющихся местом локализации фотосинтеза.

Засоление приводит к изменениям устьичного аппарата. При этом уменьшаются размеры устьиц, а их количество на единицу площа­ди увеличивается.

Приведенные данные свидетельствуют о том, что на фоне засо­ления реакция корневой системы кукурузы направлена на приспо­собление к затрудненному водному режиму, ассимиляционная по­верхность проявляет тенденцию к изменениям в сторону ксерофитности и снижению интенсивности фотосинтеза 46.

В результате обобщения данных о влиянии засоления среды выделены следующие факторы угнетения растении при засолении 12:

1) Затрудненно водоснабжения целого растения и, следовательно, отрица­тельные изменения в работе механизмов осморегуляции;

2) Дисбаланс минерального состава среды, в результате которого происходят наруше­ния минерального питания растений;

3) Стресс на сильное засоление;

4) Токсикация.


Информация о работе «Влияние 6-БАП на растения кукурузы при разном уровне засоления»
Раздел: Биология
Количество знаков с пробелами: 90994
Количество таблиц: 10
Количество изображений: 19

Похожие работы

Скачать
80788
10
8

... по фосфору, азоту или сахару. Режим хемостата позволяет с помощью фиксированной скорости разбавления поддерживать константную скорость деления и плотность клеток в популяции. Клеточные суспензии в биотехнологии используются для получения вторичных метаболитов, многие из которых являются ценными лекарственными препаратами, для промышленного выращивания клеточной биомассы и для клеточной селекции. ...

0 комментариев


Наверх