3.3. Механизмы адаптации к засолению.
Приспособление растений к условиям засоления осуществляется многими путями. Наиболее важные среди них - осморегуляция и специализация, или модификация транспортных процессов. Поэтому для получения солеустойчивых форм растений необходимо тщательно изучить транспорт ионов в зависимости от ионного состава среды и генотипа растений. Солеустойчивые виды обладают способностью накапливать Na+ в вакуолях, абсорбировать его из ксилемы и транспортировать в среду. Особенности К—Na обмена на плазмалемме и накопление Na+ и С1- в вакуолях клеток и в клеточных стенках отмечены в некоторых исследованиях, где высказано предположение о существовании высокоэффективного механизма для откачивания ионов Na у солеустойчивых растений. В исследованиях детально изучен баланс ионов и связь его с солеустойчивостыю растений. Показано, что повышенная солеустойчивость растений обусловлена, во-первых, выведением Na+ и С1- из молодых листьев, во-вторых, преимущественно базипетальным передвижением Na+ из листьев и выведением его в субстрат и, в-третьих, ограничением передвижения Cl- из корня в стебель 12.
Первостепенную роль в росте устойчивости растений последовательному воздействию факторов стресса ряд ученых отводит повышению пролина. У растений аккумуляция пролина распространяется на относительно небольшую, но метаболически значимую цитоплазматическую фракцию клетки, которая составляет от 5 до 10% от общего клеточного объема. Он оказывает протекторное действие на стерическую структуру клеточных биополимеров и поддерживает их интактную гидрационную сферу. Пролин обладает высокой растворимостью в воде. Гидрофильное поведение пролина необычно, так как молекулы его владеют не только гидрофильной и гидрофобной частью. На основе изучения свойств пролина физико-химическими методами сделан вывод, что высокая растворимость иминокислоты проистекает из способности ее молекулы благодаря наличию гидрофильных и гидрофобных групп образовывать агрегаты. Образовавшиеся полимеры ведут себя как гидрофильные коллоиды. Поэтому пролин не действует на белки. Подобно детергентам и не вмешивается в интермолекулярные гидрофобные взаимодействия белков, что ведет их к денатурации, а связывается только с поверхностными гидрофобными остатками. Высокая растворимость пролина в сочетании с его очень низкой способностью ингибировать ферменты может увеличивать растворяющий объем клетки, тем самым, снижая концентрацию солей с цитозоле. Необычный характер взаимодействия агрегатов молекул параллельно с белками повышает растворимость последних и защищает их от денатурации. Шевяковой высказана гипотеза о действии пролина как осморегулятора 47.
Известно, что высокие концентрации солей прямо и ли косвенно подавляют синтез белка, разрушают структуру и ингибируют активность ферментов первичной ассимиляции азота 18, 40. Это приводит к накоплению в тканях растений аминокислот, резкое повышение некоторых из них – тирозина, лейцина, фенилаланина неблагоприятно действует на жизнедеятельность растений. Наряду с этим в тканях растений на засолении усиливается гликолиз и пентозофосфатный цикл 42. Образующиеся при гликолизе и в пентозофосфатном цикле трех- и четырех- углеродные фрагменты (ФЕП, эритрозо-4-фосфат) служат исходными предшественниками в биосинтезе фенольных соединений (ФС). Увеличение размера пула эндогенных предшественников ФС, доступных ферментам их биосинтеза, активируют процесс образования и накопления полифенолов у растений при засолении среды. В ответ на действие солевого стресса в растении образуются и накапливаются низкомолекулярные соединения типа пролина, бетаина, полиаминов, органических кислот, сахаров, пептидов 18, 40, 47. Достановой установлено важное значение в механизме солеустойчивости растений также и обмена ФС, показана особая роль лигнина в адаптации, который может быть биохимическим маркером старения клеток и засоленности среды, а также выявлена специфика ответной реакции на воздействие качественного состава солей и их концентраций 11.
В активно метаболизирующей клетке ФС находятся в виде гликозидов или простых и сложных эфиров с низкой метаболической активностью. Поэтому повышенный уровень свободных форм ФС у растений на фоне засоления будет содействовать усилению их функциональной активности. Менее полярные свободные формы ФС в пределах физиологических концентраций, стабилизируют клеточные мембраны за счет водородных и гидрофобных связей, а их высокая антирадикальная и антиокислительная активность повышает устойчивость мембран к повреждению. Кроме того, ФС могут быть использованы в качестве запасных дыхательных субстратов, что особенно важно в стрессовых ситуациях. Опыты, проведенные в модельных схемах и in vitro, подчеркивают важность ФС в регуляции ростовых процессов и активности оксидоредуктаз у растений при засолении среды (пероксидазы, полифенолоксидазы, глютаматдегидрогеназы, ИУК-оксидазы). Функциональный вклад ФС оказывается существенным для солеустойчивости, о чем свидетельствует повышение пропорции ФС во фракции белка, скоординированность дозовых кривых накопления ФС, белка и активности ферментов в корнях растений при действии различных концентраций засоляющих ионов. Есть основание полагать, что ФС в клетках солевых растений оказывают регуляторное действие на некоторые обменные процессы, тесно связанные с адаптацией и способствуют реализации шунтовых путей метаболизма, в частности, в ассимиляции азота:
ГДГ - активность
ПО - активность ассимиляция азота
Na+, Cl-, SO2-4 ФС Нр - активность
Поглощение нитратов
Участие ФС в механизме солеустойчивости растений можно представить в виде схемы (по Достановой Р. Х., 1994), где:
ФС – фенольные соединения, ПО – пероксидаза, ПФО – полифенолоксидаза, ГДГ – глутаматдегидрогеназа, Нр – нитратредуктаза, ЛГ – лигнин.
- действие солей, - предполагаемое влияние.
... по фосфору, азоту или сахару. Режим хемостата позволяет с помощью фиксированной скорости разбавления поддерживать константную скорость деления и плотность клеток в популяции. Клеточные суспензии в биотехнологии используются для получения вторичных метаболитов, многие из которых являются ценными лекарственными препаратами, для промышленного выращивания клеточной биомассы и для клеточной селекции. ...
0 комментариев