Министерство образования Российской Федерации

Уральский Государственный Технический Университет – УПИ

Кафедра Технологии органического синтеза

РЕФЕРАТ:

 

РОЛЬ ВИРУСОВ И ПЛАЗМИД В ОПУХОЛЕОБРАЗОВАНИИ

 

 

 

 

 

 

 

 

Выполнил:

студент гр. Х-449

Покровский П.В.

Екатеринбург

2001

1. Введение

Возникновение злокачественных (раковых) опухолей может иметь различные причины, однако во всех случаях к этому причастен генетический материал клетки – ее ДНК. Что бы ни привело к образованию опухоли (раковому перерождению), последующим ростом ткани управляет ДНК безудержно делящихся опухолевых клеток. В основе превращения нормальной клетки в злокачественную – опухолевой трансформации – лежит перенос или иное изменение ДНК. Агент, вызывающий пролиферацию клеток, - это продукт гена. До сих пор, правда, не удается создать общую теорию, которая охватывала бы все формы ракового перерождения, однако изучение злокачественных опухолей, вызванных вирусами и плазмидами, уже сейчас позволяет сделать далеко идущие выводы.

Мы рассмотрим три примера онкогенеза: 1) образование опухолей у растений, 2) развитие опухолей у животных под воздействием ДНК-вирусов и 3) развитие опухолей у животных под воздействием РНК-вирусов (ретровирусов).

2. Образование опухолей у растений.

У многих растений встречаются опухоли корневой шейки. Эти разрастания ткани уменьшают поток питательных веществ между подземными и надземными частями. У многих растений такие опухоли можно вызвать экспериментально; типичные результаты получаются больше чем у половины изученных видов (рис. 1). Возбудителем является Agrobacterium tumefaciens – грам-отрицательная почвенная бактерия с перитрихальными жгутиками, сходная с представителем рода Rhizobium. Бактерии проникают в ткань через поврежденные участки и размножаются в межклетниках. Бывают вирулентные и авирулентные штаммы A. tumefaciens; вирулентные содержат большую плазмиду, так называемую Ti-плазмиду (Ti – Tumor Inducing, индуцирующая опухоль). После заражения ткани плазмиды проникают в растительные клетки.

Плазмидная ДНК прочно интегрируется в хромосомную ДНК растительных клеток и вызывает их опухолевый рост. Путем прививки таких клеток можно передать опухоль здоровому растению; таким образом, после того как клетки претерпели опухолевую трансформацию, бактерия и ее плазмида становятся уже ненужными. Интегрированная ДНК плазмиды ответственна также за способность клеток вырабатывать новые ферменты, с помощью которых синтезируются аминокислоты октопин и нопалин, так называемые опины. Эти аминокислоты могут использоваться бактерией A. tumefaciens в качестве источника углерода и азота. Благодаря Ti-плазмиде Agrobacterium получает, таким образом, преимущественный доступ к продуктам фотосинтеза растения: Ti-плазмида обеспечивает образование аминокислот, которые могут быть усвоены только этой бактерией.

Наряду с этим Ti-плазмида представляет собой естественный генный вектор для переноса чужеродной ДНК в растения. Гены, определяющие опухолевый рост, можно выделить из плазмиды и заменить другими генами. Из тканей, состоящих из клеток, трансформированных видоизмененной плазмидой, удавалось регенерировать целые растения табака, которые росли совершенно нормально и вдобавок ко всему синтезировали опины. Таким образом, гены чужеродной ДНК передавались как доминантные факторы в соответствии с обычными законами наследственности.

Поиски путей введения чужеродных генов в клетки высших растений интенсивно ведутся во всем мире с начала 70-х годов. Одним из импульсов к развитию методов переноса чужеродных генов в растения стали результаты детального изучения молекулярно-генетических основ опухолевого роста у растений при участии бактерий рода Agrobacterium. В результате этих исследований оказалось, что опухолеобразующие плазмиды агробактерий, представляющие собой мини-кольцевые ДНК, являются природной векторной системой, которую сейчас используют для переноса генов в растения. Плазмида агробактерии переносит часть своей ДНК в ДНК растительной клетки, в ДНК встраивается "нужный" ген. С помощью этого уникального вектора уже получено большое число трансгенных растений. Важно также то, что методы генной инженерии сейчас используют не только в практике, это важнейшая методология для познания фундаментальных основ организации и функционирования растительного генома.

2.1. ЧТО ТАКОЕ ГЕНЕТИЧЕСКАЯ ИНЖЕНЕРИЯ РАСТЕНИЙ

Генетическая инженерия - это система экспериментальных приемов, позволяющих конструировать искусственные генетические структуры в виде так называемых рекомбинантных (гибридных) молекул ДНК. Суть генетической инженерии сводится к переносу в растения чужеродных генов, которые могут сообщать растениям полезные свойства. Такие манипуляции осуществляются с помощью соответствующих ферментов - рестрикционных эндонуклеаз, расщепляющих молекулы ДНК в строго определенных участках, и лигаз, сшивающих фрагменты в единую рекомбинантную молекулу ДНК.

Итак, процедуры генетической инженерии сводятся к тому, что из набора фрагментов ДНК, содержащих нужный ген, собирают гибридную структуру, которую затем вводят в клетку. Введенная генетическая информация экспрессируется, что приводит к синтезу нового продукта. Таким образом, вводя в клетку новую генетическую информацию в виде гибридных молекул ДНК, можно получить измененный организм.

Растения имеют одно очень важное преимущество перед животными, а именно возможна их регенерация in vitro из недифференцированных соматических тканей с получением нормальных, фертильных (способных завязывать семена) растений. Это свойство (тотипотентность) открывает для молекулярных биологов большие возможности в изучении функционирования генов, введенных в растения, а также используется в селекции растений. Для конструирования растений необходимо решить следующие задачи: выделить конкретный ген, разработать методы, обеспечивающие включение его в наследственный аппарат растительной клетки, регенерировать из единичных клеток нормальное растение с измененным генотипом. Таким образом, методология генетической инженерии в отношении растений направлена на коренное изменение методов традиционной селекции, с тем чтобы желаемые признаки растений можно было получать путем прямого введения в них соответствующих генов вместо длительной работы по скрещиваниям.

Формальной датой рождения генетической инженерии растений является полученное с помощью Ti-плазмидного вектора первое в мире химерное растение санбин (sunbeen) как результат переноса гена запасного белка бобовых (фазеолина) в геном подсолнечника (sunflower + been). Это было первым ощутимым, хотя, быть может, и несовершенным свидетельством того, что в отношении растений генетическая инженерия сможет оправдать надежды специалистов в области молекулярной генетики, биологии и селекции.


Информация о работе «Возникновение злокачественных опухолей»
Раздел: Биология
Количество знаков с пробелами: 74184
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
43550
0
0

... для цитологического исследования, и косвенными, когда опухоли не видно, но определяются признаки, которые с той или иной степенью вероятности говорят о её наличии. В диагностике опухолей челюстно-лицевой области используются риноскопия. Передняя риноскопия. С помощью носового зеркала осматривают обе половины полости носа. При передней риноскопии можно: выявить изменения слизистой оболочки ...

Скачать
45597
0
0

... дозы, ритма облучения, объекта и объема воздействия, характера и стадии заболевания и, наконец, реактивности облученных тканей и целостного организма. Разумеется, при лечении злокачественных опухолей ведущая задача состоит в разрушении патологических тканей. Ее радикальное решение оказывается возможным, если опухолевый процесс ограничен преимущественно местными проявлениями. Естественно, что при ...

Скачать
31424
2
0

... не только темп роста и распространенность опухоли, но и её тип, и взаимоотношение опухоли и организма. Соглашение по единому фиксированию информации (клиническое описание и гистологическая классификация (когда возможна) о распространенности злокачественных опухолей в каждом конкретном случае может оказывать существенную роль: 1) в планировании лечения; 2) в составлении прогноза; 3) в оценке ...

Скачать
20575
0
0

... по системе портальной вены. Сравнительно часто наблюдаются метастазы в забрюшинных лимфатических узлах, по брюшине и в легких, иногда в яичниках, костях, надпочечниках и других органах. Клиническая картина и течение. Локализация опухоли в прямой кишке имеет важное значение для клиники и выбора метода лечения. Не все отделы прямой кишки поражаются раком одинаково часто. Примерно половина всех ...

0 комментариев


Наверх