1.Изменчивость организма и её значение
Генетика изучает не только наследственность, но и изменчивость организмов. Изменчивостью называют способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания. Различают два типа изменчивости: наследственную, или генотипическую и ненаследственную, или фенотипическую, - изменчивость, при которой изменений генотипа не происходит.
Изменчивость организмов имеет определяющее значение в эволюционном прогрессе, так как без изменчивости нет развития. Но для того, чтобы этим процессом управлять, необходимо иметь более полное представление о том, как возникают изменения. По этой причине приходится неоднократно сравнивать, сопоставлять и на основе добытых фактов делать соответствующие обобщения.
В этой связи необходимо еще раз вернуться к экспериментам С. Лурия и М. Дельбрюка и проанализировать выводы, сделанным ими. Следует еще раз напомнить о сути эксперимента, которая заключается в том, что в результате воздействия на бактериальную культуру того или иного лекарственного препарата ранее чувствительная к этому препарату культура приобретает к нему устойчивость.
Из предыдущей главы известно, что выводы, сделанные М. Дельбрюком и С. Лурия, а впоследствии подтвержденные Д. и Э. Леденбергами, согласовали исключительной важности явление живой материи с дарвиновской концепцией "случайного" мутирования.
В этом важном процессе развития живого "случайность" истолковывается, как обычное свойство живых организмов делать ошибки. Человек, например, способен в своей деятельности допускать многочисленные неточности. Особенно это проявляется в незрелом возрасте и при плохой трудовой подготовке.
Следуя этим сравнениям, выходит, что ген способен допускать ошибки так же, как и ребенок, решая задачи. В результате таких ошибок нарушается обычная структура генома и "случайно" возникает мутация, способная когда-то в будущем пригодиться клетке или организму.
Получается, что, по теории Дарвина, изменения возникают преждевременно, про запас.
А. Нейфах, в уже вышеназванной статье, аргументирует это явление следующим образом: "Сама редкость процесса говорит о его случайности".
Далее он продолжает, а по существу пытается обосновать доказательство концепции "случайности" дарвиновской теории. "Но почему все-таки происходит движение тех или других генов, хотя бы редкое и случайное?" И поясняет это следующим образом. "Точно пока не ясно". Вот, собственно, и вся наука в вопросах изменчивости у приверженцев дарвиновской "случайности".
Анализируя эти выводы, нетрудно понять, что объяснять на этой основе эволюционное развитие жизни на Земле, мягко говоря, не серьезно. Но неодарвинисты, когда их за такую несерьезность начинают критиковать, ссылаются на результаты опыта с фагом и бактериями, результаты которых, по их мнению, подтверждают "случайность" мутаций.
Но сейчас, когда существует другая точка зрения, когда известен механизм возникновения функционально-структурных модификаций, когда их возникновение обосновано с позиций новейших достижений молекулярной биологии, вопросы изменчивости необходимо рассматривать под этим углом зрения.
Для этого необходимо в опытах С. Лурия и М. Дельбрюка обратить внимание на одну деталь. "Если концентрация частиц фага на поверхности чашки с питательным агаром 1010, а концентрация клеток бактерии 105, то после инкубации такой чашки поверхность агара остается чистой".
Это значит, что бактерий не спасают никакие заранее возникшие мутации, способные обеспечивать их выживание. Бактерии гибнут все. Но если на агар, содержащий 1010 частиц фага, высеять не 105, а 109 клеток бактерий, то на поверхности появляется небольшое количество бактерий.
В данном случае соотношение концентрации изменилось, хотя и не абсолютно, но в пользу бактерий, и часть бактериальных клеток выживает. Объяснить это явление возможно только с помощью функционально-структурных модификаций, которые дифференцируют бактериальные клетки на функционально активные и функционально пассивные.
Такая же дифференциация имеет место и среди вирусов. Когда концентрация в пользу вирусов, то они справляются со всеми бактериями. Но стоит повысить концентрацию в пользу бактерий, как среди них найдутся такие, которые способны изменить свой метаболизм и выжить. Это происходит не потому, что они приобрели заранее преждевременную мутацию, которую теперь "отбирает" фактор среды - вирус, а поточу, что бактериальная клетка примерно в тысячу раз крупнее частицы фага. И если в эту клетку проникает большее количество фаговых частиц, то она гибнет. А если одна, да еще и ослабленная, (это тоже следует допускать, так как среди вирусов есть такая же функционально-структурная дифференциация), то метаболизм бактерии справится с таким фагом.
Происходит это следующим образом. При внедрении фага в бактериальную клетку, он синтезирует свою ДНК и использует для этого бактериальный строительный материал, которого не хватает для синтеза бактериальной ДНК. Уменьшение или увеличение концентрации того или иного вещества меняет клеточную среду.
В изменившейся среде метаболизм бактериальной клетки перестраивается на ускоренный синтез строительного материала, необходимого для синтеза молекул ДНК фага и бактерии. И если измененный метаболизм бактериальной клетки способен обеспечить этот синтез, то она выживает.
Полученный от бактерии клон клеток способен выжить и в более высокой концентрации фага. И совсем неважно, соприкасались они ранее с фагом или нет. Клетки полученного клона будут и дальше наращивать свою устойчивость, если медленно наращивать концентрацию фага. Это и есть тот случай, который показывает, как идет "обучение" в поколениях, и возрастание приспособленности к агенту. Но если концентрацию фага резко увеличить, то погибнут все клетки бактерий.
Этот пример показывает, как идет адаптация организмов на основе функционально-структурных модификаций к различным, даже сильнодействующим факторам среды. Эту особенность организма использовали с давних времен.
Короли, например, не желая быть отравленными ядами, принимали их, начиная с небольших доз, чтобы приученный к ядам организм мог справиться с большими дозами. По этой причине в Австралии не удалось справиться с кроликами, которые наносят большой вред сельскому хозяйству и природе материка. Заражение их сильнодействующими вирусами привело к тому, что более 97 процентов кроликов погибло. Оставшиеся 3 процента выжили по причине того, что смогли функционально справиться с вирусами.
Это произошло потому, что функционально-структурные модификации дифференцируют на более сильных и слабых кроликов и вирусов. Имеет место вероятность проникновения ослабленного вируса в более сильный организм кролика. А дальше идет "обучение", то есть перестроение метаболизма клеток хозяина, направленное на борьбу с проникшим в организм агентом.
С каждым поколением выживаемость будет возрастать, а способность кроликов к быстрому размножению обеспечивает ускоренное создание популяции, устойчивой к данному вирусу.
В природе таких примеров немало, особенно сейчас, когда в сельском хозяйстве начали широко применять ядохимикаты. В итоге самые сильнодействующие яды не могут уничтожить вредителей, обладающих способностью к массовому размножению. За одно лето они воспроизводят несколько поколений и очень быстро передают потомству функционально-структурные приобретения.
С подобными возможностями не может сравниться химическая промышленность ни одной, даже самой развитой страны мира. Она не в состоянии за один сезон создавать несколько поколений химических препаратов с еще более сильнодействующими характеристиками.
В результате соревнование идет в пользу вредителей. Они успевают приобретать противоядие даже к самым сильнодействующим ядам. Где-то на окраине поля вредитель получил меньшую дозу яда и выжил, но с уже запущенным механизмом приспособления. На его потомство уже не будет действовать и более сильная доза. Так человек и проиграл химическую войну с букашками.
Из этого следует сделать вывод, что живые организмы на любое химическое действие способны вырабатывать биологическую защиту. Например, вещество метотрексат оказывает сильное действие на быстро-делящиеся клетки за счет подавления работы фермента.
Если в культуру клеток вводить концентрацию метотрексата, которая рассчитана на гибель 99 процентов клеток, то выжившие клетки через несколько поколений начнут выдерживать повышенную дозу. Таким образом, можно получать линии клеток, которые нормально себя чувствуют и размножаются в таких высоких концентрациях метотрексата, при которых клетки исходного клана погибают быстро и все без исключения.
Обнаружен и механизм такой устойчивости. Оказывается, клон выживших клеток синтезирует в сотни и тысячи раз больше фермента, на который действует метотрексат. Механизм такого резкого усиления синтеза известен и ведет он к возникновению функционально-структурных модификаций, которые повышают устойчивость организма к самым сильнодействующим факторам среды.
Это происходит при одном условии. Если этот фактор дает организму время для перестроения метаболизма своих клеток, то клетки, а соответственно и организм, приобретают устойчивость к нему. Например, на действие кохицина (препарата, получаемого из некоторых растений, который в клетках разрушает основы клеточного скелета - микротрубочки, необходимые при клеточном делении) клетки становятся устойчивыми к нему благодаря тому, что кохицин в них почти не проникает. Эти клетки способны выдерживать дозу в 500-800 раз выше той, что блокирует деление обычных клеток.
Все клетки имеют постоянно усиливающийся механизм защиты от проникновения ненужных веществ из окружающей среды. В клетках эту функцию выполняет клеточная мембрана. Оказывается, она свою функцию может увеличить в сотни раз за счет синтеза особого белка, которого в сотни раз становится больше, чем в обычных клетках.
Но всякое изменение синтеза сопряжено с изменением в геноме. А это происходит только тогда, когда действующий фактор среды "требует" усиления ответной реакции, то есть функции. Подтверждением данной схемы существующего в природе механизма изменчивости служит клонально-селекционная теория. Потребовалось около 100 лет, чтобы выработать такую теорию, которая объясняет образование антител, защищающих организм от вторжения чужеродных частиц.
Мы опускаем весь ход исследований по этому вопросу, об этом можно прочитать в журнале "В мире науки" № 10, 1987 г., а используем лишь конечный результат данных исследований, которые легли в основу клонально-селекционной теории. Суть их заключается в том, что антиген, связывающий участок антитела, является продуктом не менее, чем пяти генов, в каждом из которых имеются вариабельные участки.
В ходе дифференцировки лимфоцитов эти гены рекомбинируют и для каждой клетки создается их уникальное сочетание. Это сочетание и определяет специфичность антител, производимых данной клеткой. Происходит она под влиянием стимуляции антигеном и усиленным размножением клона клеток, специфичных к данному чужеродному агенту. В результате в кровь выбрасываются антитела, способные вступить с ним в борьбу. Если организм функционально способен обеспечить достаточный выброс специфических антител, то он справляется с инфекцией и выживает, а если нет, то гибнет.
Подобные явления происходят и с растительными организмами. Судьба растения, пораженного инфекцией, зависит от того, насколько быстро оно сумеет обнаружить присутствие в своих тканях болезнетворных микроорганизмов и включить защитные системы. Но что заставляет растение бить тревогу? Ведь не может же оно "знать в лицо" всех своих многочисленных врагов. Оказывается, в этом нет нужды.
Растения возбуждаются, соприкасаясь с особыми веществами, получившими название элиситоры, которые принадлежат микроорганизму, находятся на его поверхности и первыми вступают в контакт с растениями, вызывая реакцию сверхчувствительности. Спустя несколько часов растения образуют фитоалексины. Выяснилось также, что если удается на некоторое время задержать гибель поверхностных клеток растения, то на это же время переносится и начало синтеза фитоалексинов. И наоборот, если гибель клеток ускорить, ускоряется и выработка антибиотических веществ. Значит, сами элиситоры вызывают лишь реакцию сверхчувствительности, а уже погибающие клетки передают сигнал, приводящий растение в состояние боевой готовности.
Было и открыто вещество, выделяемое умирающими клетками, которое и является носителем сигнала. И чем больше послано сигналов с призывом о помощи, тем больше будет выработано фитоалексинов. Растение, вырабатывая антибиотики, становится способным во всеоружии встретить проникновение в свои ткани возможных агрессоров.
Если искусственно обработать растение слабым раствором элиситора, то происходит при этом перестройка растительных клеток и растение значительно быстрее реагирует на агрессию. Вот какими возможностями обладает живая материя, и возникают эти возможности не случайно, а закономерно. Организмы раскручивают свой потенциал во времени и в постоянно меняющихся условиях среды.
Все это приобретено в процессе развития жизни на Земле, в процессе ее эволюции. Поэтому неудивительно, что жизнь достигла таких высот в своем совершенствовании. Но этот процесс не закончился. Он идет, и будет продолжаться до тех пор, пока будут условия для развития жизни на Земле. В этой связи, человек, как высшее творение природы, должен поставить перед собой задачу не только раскрыть секреты развития природы, но и использовать их в своей практической деятельности. Главное здесь - не ждать "слепого случая"; а вдруг что-то произойдет, и нам крупно повезет. Это утопия. Утопистами можно называть и тех, кто отстаивает и проповедует эту точку зрения.
Случайное и бесцельное, то есть без всякого на то основания, появление мутаций, появление их неопределенного множества и без определенного значения ведет к тому, что роль среды сводится только к отбору тех из них, которые необходимы в данных условиях. Без условий среды, как видим, и здесь не обходится, но роль ее совершенно иная. Среда здесь не "мастер", а "палач". Природа не "мастерская", а "похоронное бюро". Строить на этих концепциях эволюционную теорию - абсурд. Доказательством этого вывода являются и недавно полученные экспериментальные данные в школе здравоохранения Гарвардского университета
Наконец-то получены данные, которые поставили под сомнение фундаментальный принцип современной биологии - представление о случайности возникновения мутаций.
Д. Кейрнс и его коллеги заявили, что методика классических экспериментов С. Лурия и М. Дельбрюка не позволяла обнаружить дополнительные мутации, возникающие в ответ на новую потребность.
Кейрнс с сотрудниками повторил опыты Лурия и Дельбрюка. Помимо ожидаемых предшествующих мутантов, они обнаружили и такие, которые образовались в ответ на новый внешний фактор. В их опытах - это присутствие лактозы.
С традиционной точки зрения появление подобных экстрамутаций не объясняется. Это и позволило Кейрнсу сделать очень важное заявление. "Поразительно, сколь малообоснованным было общепринятое мнение".
Подобные результаты получены и другими экспериментаторами. Например, Б. Холл из Коннектикутского университета обнаружил, что частота одной полезной мутации в условиях 'жесткой селекции повышается в 50 раз. По мнению Холла, такие факты свидетельствуют, что клетки каким-то образом могут распознавать, какая мутация была бы выигрышной и увеличивать вероятность ее возникновения.
Механизм возникновения функционально-структурных модификаций Холлу и Кейрнсу не известен, поэтому они делают вывод, что природа этой поразительной способности на сегодняшний день совершенно неизвестна.
В этих условиях мы уже сейчас должны осмыслить свою теоретическую и практическую деятельность с новых позиций, чтобы не допускать ошибок и в своей социальной деятельности. Для этого необходимо сопоставить все то, что человечеству уже удалось сделать и, прежде всего, в сравнении с существующими теориями эволюции доказать значение функционально-структурных модификаций в эволюционном процессе.
... заболеваний Общие подходы к лечению наследственных болезней сходны с подходами к лечению болезней любой другой этиологии. При лечении наследственной патологии полностью сохраняется принцип индивидуализированного лечения (лечить не болезнь, а болезнь у конкретного человека). Этот принцип особенно важен, поскольку наследственные болезни обладают гетерогенностью и с одной и той же клинической ...
... - психоаналитическое. Его представитель З. Фрейд преступность объяснил давлением подсознательных, главным образом, сексуальных влечений [2]. В последние десятилетия свой вклад в подтверждении гипотезы о наследственном характере преступных наклонностей внесла генетика. Основным методом изучения стал так называемы близнецовый метод. Этот изучения наследственности был предложен Ф. Гальтоном. Суть ...
... равна 1 % кроссинговерного потомства. Например, ген резус-фактора и ген овалоцитоза расположены друг от друга на 3 морганиды, а ген дальтонизма и гемофилии - на 10 морганид. Положения хромосомной теории были доказаны цитологически и экспериментально Морганом на плодовой мушке дрозофиле. 2. Наследование признаков, сцепленных с полом Пол определяется в момент оплодотворения. В генетике 22 ...
... живые организмы-и удивительное многообразие генов, кодирующих эти белки. В геноме каждого человека есть какие-то области, определяющие его индивидуальность. Некоторые гены человека отличаются от генов крысы всего несколько нуклеотидами-знаками генетического кода. Другие гены у них разные, но одинаковые у двух людей. Изменчивость, связанная с существованием генов , подобных генам группы крови у ...
0 комментариев