Месторождения газоконденсатного типа.

В отличие от чисто газовых месторождений газоконденсатные разрабаты­ваются для получения не только газа, но и высокомолекулярных компо­нентов — газового конденсата, ценнейшего сырья нефтехимического про­изводства. Нередко конденсат является основным целевым сырьем. Поэто­му режимы разработки газоконденсатных месторождений следует оцени­вать как способы добычи и газа, и — особенно — конденсата.

Разработка на истощение.

Газоконденсатные залежи в их начальном — на момент открытия — со­стоянии характеризуются высокими пластовыми давлениями, достигающи­ми обычно нескольких десятков мегапаскалей. Встречаются залежи с отно­сительно низкими (8—10) и очень высокими (до 150— 180 МПа) начальными пластовыми давлениями. Основные запасы углеводородов в залежах газо­конденсатного типа приурочены к объектам с начальными пластовыми давлениями 30 — 60 МПа. В отечественной газопромысловой практике раз­работка газоконденсатных месторождений осуществлялась до недавнего времени на режиме использования только естественной энергии пласта. Такой режим («истощения») требует для своей реализации минимальных капитальных вложений и относительно умеренных текущих материальных и финансовых затрат. В истории разработки газоконденсатного месторож­дения, как и при разработке чисто газового, происходит последовательная смена нескольких характерных периодов: освоения и пробной эксплуата­ции; нарастающей, максимальной, падающей добычи; завершающий пери­од. В отличие от разработки чисто газовой залежи в данном случае прихо­дится иметь дело с продукцией, постоянно изменяющей свой состав. Это связано с явлениями ретроградной конденсации пластовой углеводородной смеси при снижении пластового давления. Высокомолекулярные углеводо­родные компоненты смеси после снижения давления в залежи ниже давле­ния начала конденсации рнк переходят в жидкую фазу, которая остается неподвижной практически на всем протяжении разработки месторождения в силу низкой фазовой насыщенности (не более 12—15% объема пор), на­много меньшей порога гидродинамической подвижности (40 — 60 %).

Отбор углеводородов из газоконденсатного пласта на режиме истоще­ния сопровождается массообменными явлениями в углеводороднасыщенном поровом пространстве коллектора, которые соответствуют процессу дифференциальной конденсации смеси. В области высоких давлений (обычно выше 15 —20 МПа) состав отбираемой из пласта продукции сква­жин изменяется практически таким же образом, как при контактной кон­денсации смеси. Процесс контактной конденсации отличается от процесса дифференциальной конденсации тем, что снижение давления в системе проводится путем изотермического увеличения объема системы. Этот про­цесс исследуют либо расчетным путем, используя данные о константах межфазного равновесия составляющих смесь индивидуальных углеводород­ных компонентов, либо на сосуде фазовых равновесий с раздвижными поршнями. Следует отметить, что процесс контактной конденсации в га­зопромысловой практике не встречается, но иногда используется при исследовании межфазного массообмена в силу простоты и достаточно высо­кой степени соответствия пластовым явлениям, особенно для повышенных пластовых давлений.

Г.С. Степанова и В.Н. Шустеф подробно изучали особенности процес­са дифференциальной конденсации вуктыльской пластовой смеси, выпол­няя одновременно для сравнения расчеты по контактной конденсации [47]. По данным этих исследователей, граничное давление, ниже которого рас­четные составы газовой фазы для дифференциального и для контактного процессов несколько различаются, равно приблизительно 20 Мпа.

В качестве примера разработки на режиме истощения можно рассмо­треть эксплуатацию запасов углеводородов Вуктыльского газоконденсатного месторождения. История разработки этого месторождения (Республика Коми) началась с открытия в середине 60-х годов крупнейших в европей­ской части России залежей углеводородов в пермско-каменноугольных карбонатных отложениях. Месторождение приурочено к брахиантиклинали субмеридионального простирания площадью более 250 км2 и амплитудой свыше 1500м (по подошве ангидритовой пачки кунгурского яруса). Склад­ка располагается в осевой части Верхнепечорской впадины Предуральского Краевого прогиба (Тимано-Печорская нефтегазоносная провинция). Запад­ное крыло складки крутое (до 70 —90°), свод узкий гребневидный; в при-осевой части складки это крыло нарушено надвигом, падающим на восток под углом 65 — 70°. Амплитуда вертикального смещения около 600м. Вос­точное крыло складки относительно пологое (20 — 25°).

В геологическом разрезе присутствуют ордовикско-силурийские, ка­менноугольные, пермские и триасовые отложения, перекрытые четвертич­ными. Установлены две газоконденсатные залежи. Основная залежь при­урочена к органогенным известнякам и образовавшимся по ним вторич­ным доломитам визейско-артинского возраста. Продуктивная толща по вертикали составляет около 800м; она перекрыта 50—100-метровой дачкой трещиноватых аргиллитов верхнеартинского подъяруса и гипсово-ангидритовой толщей кунгурского яруса, являющейся хорошей покрыш­кой. Открытая пористость коллекторов изменяется от 5 — 6 до 22 — 28%, проницаемость колеблется от 10-15— 10-16 до (4 — 8)10-12м3 . Залежь массив­ная, сводовая, тектонически ограниченная. Глубина залегания кровли ре­зервуара 2100—3300м. Имеется нефтяная оторочка.

Пластовая газоконденсатная смесь характеризовалась следующим на­чальным усредненным составом, % (молярные доли): метан 74,6; этан 8,9; пропан 3,8; бутаны 1,8; пентан плюс вышекипящие 6,4; азот 4,5. Конденсат имел начальную плотность около 0,745 г/см3, содержание в нем метановых углеводородов составляло, % (молярные доли), 71; ароматических 11,9; наф­теновых 17,1. В конденсате было от 0,5 до 1,2% парафина, от 0,02 до 0,09 % серы. Нефть нефтяной оторочки легкая (плотность 0,826 — 0,841 г/см3), высокопарафинистая (4,0 — 8,1%), содержание серы в ней от 0,15 до 0,22%.

Начальные запасы газа на Вуктыльском месторождении составляли 429,5 млрд. м3, конденсата 141,6 млн. т, Начальная характеристика пластовой системы оценивалась следующими средними величинами: пластовое давле­ние 36,3 МПа, температура 62 °С, давление начала конденсации пластовой углеводородной смеси 32,4МПа, конденсатогазовый фактор 360 г/см3.

Разработка Вуктыльского НГКМ была начата в 1968г. Генеральный план расстановки скважин на месторождении формировался в соответствии с принципами, обоснованными в проектах ОПЭ и разработки. Буре­ние эксплуатационных скважин было начато в 1968г. Залежь разбурива­лась без отступлений от генерального плана, не считая необходимых уточ­нений, связанных с рельефом местности и выдачей резервных точек вза­мен ликвидированных скважин.

Совмещение ОПЭ с разведкой позволило из 44 разведочных скважин использовать 28, т.е. 21 скважину перевести в эксплуатационные, шесть — в контрольно-наблюдательные и одну — в пьезометрические.

Темпы ввода скважин в эксплуатацию резко отставали от проектных, в то же время объемы добычи газа и конденсата соответствовали проекту.

Первые четыре года разрабатывался только северный купол, в кото­ром сосредоточена основная доля запасов газа и конденсата. Южный ку­пол введен в разработку в 1973г. Среднесуточные дебиты поддерживались на максимально возможном уровне. При этом большинство скважин (около 80 %) работало одновременно по лифтовым трубам и затрубному пространству и при максимально допустимых депрессиях, составляющих от 6 до 8 МПа. Диапазон дебитов в тот период был очень большой — от 200 до 2000 тыс. м3/сут. По 15 скважинам среднегодовой дебит был более 1000 тыс. м3/сут, по 40 скважинам от 500 до 1000 тыс. м3/сут.

Учитывая большой этаж газоносности и сложное строение месторож­дения, для наблюдения за поведением пластового давления по залежи ре­зультаты всех замеров приводили к средневзвешенной по запасам плоско­сти с отметкой минус 3025 м. Распределение давления по скважинам до на­чала разработки месторождения определялось положением скважин на структуре и отметкой вскрытых интервалов. Среднее начальное пластовое давление на средневзвешенной плоскости составило 36,3 МПа.

Эксплуатационное бурение позволило к началу 80-х годов довести фонд действующих скважин до полутора сотен. Тем не менее, поскольку бурение отставало от проектных объемов отбора газа, скважины работали с относительно большими депрессиями. К этому периоду времени на мес­торождении были достигнуты максимальные отборы газа — 18—19 млрд. м3 в год. С 1982—1983гг. начался период падающей добычи (рис. 1, табл. 1.).

ААА

Динамика показателей разработки Вуктыльского НГКМ

Показатель Год разработки
1968

1970

1975

1980

1985

1990

1995

 

Извлечение газа,

млрд. м3

0.06

0,5

2.815

2,249

Извлечение конден-

сата, млн. т

0.02

0,18

1.705

1,900

0.719

0,460

U32Q3

0,200

0.2155

0,0789

Среднегодовой фонд

действующих сква-

2

3

15

49

59.

63

т

118

145

140

т

155

152

155

жин
Средний дебит одной 2Q

1100

£ifl 532 Ж Д5 7Q

скважины, тыс, м3

500 528 830 47
сут
Коэффициент эк-

0.87

0.969

0.983

U282

0.917

0.694

сплуатации скважин 0,85 0,95 0,850
Коэффициент ис-

0.62

0.69

0.840

0.866

0.848

пользования фонда
скважин

Примечание. В числителе фактические показатели, в знаменателе — проектные.

1968 1971 1974 1977 1980 1983 1986 1989 1992 1995

Годы

Рис. 1.28. Динамика некоторых технологических показателей при разработке Вуктыльского НГКМ:

/ — накопленная добыча газа, млрд. м3; 2 — то же конденсата, млн. т; 3 — средневзвешенное пластовое давление, МПа. Вертикальной штриховкой обозначен период максимальных годо­вых отборов конденсата, горизонтальной — газа

Освоение запасов углеводородов такого сложного глубокозалегающего месторождения, как Вуктыльское, с высоким начальным пластовым давле­нием, значительным содержанием конденсата в пластовой смеси, большим этажом газоносности, низкопроницаемыми трещиноватыми коллекторами потребовало постановки целого ряда новых технико-технологических за­дач. В проектах ОПЭ и разработки месторождения были обоснованы, а затем, с конца 60-х годов, реализованы на практике следующие решения:

разработка продуктивного пласта большой толщины (до 1500м) одной сеткой скважин;

отбор запасов в зонах повышенной продуктивности скважинами уве­личенного диаметра (219 мм);

центральная расстановка скважин;

высокая подвеска лифтовой колонны;

транспорт нестабильного конденсата в однофазном состоянии на большие расстояния до перерабатывающего завода.

В условиях карбонатных коллекторов большой толщины были отра­ботаны двухэтапная солянокислотная обработка скважин; .методы их вскрытия, освоения и глушения.

Разработка газоконденсатных залежей, приуроченных к низкопрони­цаемым коллекторам (на Вуктыле средняя проницаемость около 1014м2), — одна из наиболее сложных газопромысловых проблем. Особенно острой она становится после вступления месторождения в завершающую стадию эксплуатации, когда энергетические возможности пласта в основном уже исчерпаны.

Несмотря на все принятые меры, включая использование перечислен­ных выше прогрессивных технико-технологических решений, к концу разработки Вуктыльского месторождения на режиме истощения в недрах этого объекта добычи газа и газового конденсата остаточные запасы газа составят несколько десятков миллиардов кубометров (порядка 10 % от начальных запасов), жидких углеводородов — около 100 млн. т (порядка 70% начальных запасов).

Известно, что в условиях низкопроницаемых коллекторов иногда не­возможно отобрать с достаточной полнотой не только жидкие углеводоро­ды, но и газ из-за резкого снижения фазовых проницаемостей при выпа­дении ретроградного конденсата в призабойных зонах скважины. Именно это обстоятельство побудило специалистов отказаться от разработки на режиме истощения месторождения Нокс-Бромайд: лабораторные исследо­вания показали, что такой режим позволит отобрать лишь небольшую часть от запасов не только конденсата, но и газа (газоотдача не превысит 13%).

С целью изучения особенностей отбора газоконденсатной смеси из пласта, характеризующегося низкими коллекторскими свойствами, авто­ром совместно с сотрудниками была реализована специальная исследова­тельская программа.

Предпринятые широкомасштабные экспериментальные исследования процесса испарения выпавшего конденсата при реализации режима исто­щения газоконденсатной системы в диапазоне давлений от р = р1 > рнк до р = р2 = 1 МПа впервые позволяют подвергнуть анализу результаты опы­тов, в которых процесс проводился до состояния глубокого истощения системы, причем проницаемости физических моделей пласта существенно различались. Использовали две модели длиной 1,002м, диаметром 0,387м и с одинаковой пористостью — 24,8 %. В одних случаях модели пласта со­держали связанную воду, в других были сухими (по воде)

Эксперименты проводились применительно к условиям последне­го этапа завершающей стадии разработки Вуктыльского НГКМ (Тпл=62 0С = const). Были сформулированы следующие исследовательские задачи.

1. Определение области давлений максимальной конденсации (то есть начала процесса нормального испарения) компонентов пластовой углеводо­родной смеси путем моделирования режима разработки залежи на исто­щение с использованием модельной газоконденсатной системы (ГКС), фи­зических моделей пласта и сосуда PVT-соотношений. Решение этой задачи необходимо для определения диапазона пластовых давлений, при кото­рых можно ожидать проявления эффекта нормального испарения ГКС в условиях Вуктыльского НГКМ.

2. Исследование процесса нормального испарения выпавшего конден­сата в пористых средах с различными проницаемостью и водонасыщенностью. Решение этой задачи необходимо для оценки зависимости интенсив­ности испарения компонентов выпавшего конденсата от таких параметров пласта-коллектора, как проницаемость и водонасыщенность, что сущест­венно при доразработке истощенной газоконденсатной залежи.

Таблица 2

Эксперименты по испарению выпавшего конденсата

Номер эк­сперимента Номер модели пласта

Проницаемость, 10-15м2

Водонасыщен-ность, %
2 2а 3 За 36 4 4а Бомба PVT КД-2-3 КД-6-7 КД-2-3 КД-6-7 КД-2-3 КД-6-7 64 9,1 64 9,1 64 9,1 0 0 10 30 30 10

В качестве модели пластовой ГКС использованы во всех случаях мно­гокомпонентные смеси алкановых углеводородов, близкие по своим физи­ко-химическим свойствам к пластовой смеси исходного (до начала разра­ботки) состава Вуктыльского НГКМ, имеющей следующие характеристики: содержание С1 - 79,1; С2 - 8,8; С3 - 3,9; С4 - 1,8; С5+ - 6,4,% (молярная доля); молекулярная масса С5+ приблизительно 115 г/моль; кон-денсатогазовый фактор около 330 г/м3; давление начала конденсации около 25 МПа; давление максимальной конденсации 6 ± 1 МПа.

Изучение процессов фильтрации модельной ГКС на режиме истоще­ния, а также создание водонасыщенности физических моделей пласта про­водились по разработанной во ВНИИГАЗе методике с использованием со­ответствующей экспериментальной установки [5].

Результаты исследований обрабатывали с помощью ЭВМ и специально разработанной программы расчетов всех рассматриваемых при моделиро­вании параметров.

Для удобного (в рамках данной работы) анализа результатов исследо­ваний выполненные эксперименты сгруппировали в следующие серии (см. табл. 1.18):

исследование влияния проницаемости "сухой" (без связанной воды) пористой среды на компонентоотдачу (эксперименты 2, 2а, 3);

то же для пористой среды, содержащей 10 % от объема пор связанной воды (опыты За, 4а);

то же для пористой среды, содержащей 30 % от объема пор связанной воды (эксперименты 4, 3b).

Рассмотрим особенности углеводородоотдачи истощаемого газокон-денсатного пласта, пористая среда которого является "сухой", то есть не содержит связанную воду. Данный случай имеет не только теоретическое, но и практическое значение, поскольку содержание связанной воды во многих газоконденсатных залежах весьма незначительно (единицы процен­тов объема пор). Целесообразность проведения экспериментов без связан­ной воды, обусловлена также необходимостью оценить влияние пористой среды на массообменные процессы при сравнении результатов с данными, полученными на бомбе PVT.

На рис.2—7 представлены отдельные результаты сравнения ди­намики состава продукции истощаемого пласта и некоторых параметров добываемой смеси для моделей пласта с различной проницаемостью (сосуд PVT-соотношений можно условно рассматривать как образец пористой среды с весьма высокой проницаемостью, например, 10-10—10-11м2). Из сравнения графиков следует, что с уменьшением проницаемости от 10-10 — 10-11 м2 (эксперимент №2) до 64.10-15м2 (№ 2а) и далее до 9,1-10-15 м2 (№3) происходит снижение давления максимальной конденсации компонентов пластовой смеси. Особенно это проявилось у низкомолекулярных компо­нентов.

Для исследования типичных, но сравнительно "легких" газоконденсат­ных смесей (молекулярная масса фракции С5+ в смеси исходного состава равна 115 г/моль) наблюдается интенсивный рост содержания в продукции компонентов С2+ после снижения пластового давления ниже давления мак­симальной конденсации, причем вне зависимости от испарения конденсатогазовый фактор продукции после снижения давления ниже давления максимальной конденсации вновь возрастает (рис. 4), достигая вдвое больших, чем при давлении максимальной конденсации, значений к кон­цу отбора пластовой смеси (p=1 МПа). КГФ растет за счет компонентов С5 и С7; декан (С10) практически не испаряется. При этом молекулярная масса фракции С5+ почти монотонно снижается во всей области давлений, от pрнк до р =1 МПа (рис. 5).

C2-4 % (Молярная доля)

Рис.2.


Зависимость содержания фракции С2-4 в равновесной газовой фазе от «пластового» давления:

1 – сосуд PVT-соотношений; пористая среда без связной воды с проницаемостью:

2 – 64·10-15 м2

3 – 9,1·10-15 м2

Если поведение кривой "содержание фракции С2-4 , % как функции пластового давления" аналогично поведению соответствующей кривой для фракции С5+ (график КГФ), то и зависимость молекулярной массы фрак­ции С2-4 также аналогична этим двум кривым; в области давлений ниже давления максимальной конденсации молекулярная масса С2-4  вновь увели­чивается, в отличие от этого параметра для стабильного конденсата.

Сопоставление результатов экспериментов на физических моделях пласта с бомбовыми данными показывает, что пористая среда в обследо­ванном диапазоне не препятствует процессу нормального испарения вы­павшего конденсата, хотя некоторые детали массообменных процессов в пустотелом сосуде PVT-соотношений и в пористой среде, естественно, раз­личаются. Так, представляет интерес область давлений от 8—10 до 13 — 15 МПа (рис. 5, 6). Здесь заметно нарушается монотонный характер уменьшения молекулярной массы стабильного конденсата (фракция С5+), что обусловливается вступлением в область максимальной конденсации фракции промежуточных углеводородов (см. рис.2). По-видимому, сме­щение равновесия для этих углеводородов в сторону (нормального) испаре­ния оказывает влияние на конденсацию легкой части фракции С5+, близ­кой по химическому составу к промежуточным углеводородам: конденса­ция С5+ заметно затормаживается, причем более заметно в пористой среде с меньшей проницаемостью, по сравнению с сосудом PVT-соотношений (см. рис. 6).

Рассмотрим особенности углеводородоотдачи истощаемых газоконденсатных пластов, различающихся коллекторскими свойствами (прони­цаемостью), пористая среда которых содержала связанную воду в количе­стве 10% объема пор (см. табл. 1.29). В данном случае сосуд PVT не рас­сматривается, сравниваются лишь эксперименты с частично водонасыщенными пористыми средами, различающимися проницаемостью (64-10 -15м2 — эксперимент №3а; 9,1-10 -15 м2 — эксперимент №4а).

Анализ результатов показал, что зависимости состава продукции и ее параметров от давления близки к тем, что характеризуют процесс истоще­ния сухой пористой среды. Известно, что связанная вода, как правило, за­нимает наиболее мелкие поры, "выключая" их таким образом из процесса фильтрации и ухудшая сорбционные свойства коллектора. Поэтому при­сутствие воды в определенной степени сгладило различия между пористы­ми средами с большей и меньшей проницаемостями. Тем не менее и в этом случае для более проницаемой пористой среды зависимость содержания, в частности, углеводородов С2-4 в продукции от текущего давления в "пласте" расположена несколько выше (рис. 7).

Графики зависимости молекулярных масс фракций от текущего плас­тового давления также аналогичны тем, что получены на "сухих" пористых средах.


Результаты экспериментов 4 и 36 (см. табл. 2), выполненных на тех же моделях пласта, но при более высоком содержании связанной воды в их пористых средах (30 % объема пор), в данной работе не приведены, так как они в значительной мере аналогичны результатам исследований на "сухих" моделях.

Повышенное содержание связанной воды лишь еще больше сглажива­ет различия между пористыми средами с большей и меньшей проницаемостями.

Таким образом, анализируя полученные результаты, можно сделать следующие выводы.

Процесс глубокого истощения газоконденсатной системы типа вуктыльской до давления порядка 1 МПа, моделируемый как в сосуде PVT-соотношений, так и в пористых средах с различной проницаемостью и водонасыщенностью, начиная с давления максимальной конденсации (т. е. при р =• 5 — 7 МПа), характеризуется наличием области нормального испа­рения для компонентов от С5 до С8 — С9.

Компоненты жидкой фазы пластовой смеси в процесс нормального испарения вовлекаются тем активнее, чем ниже их молекулярная масса.

 


 

 

 




При значениях молекулярной массы выше 100 г/моль выход компо­нентов мало изменяется в процессе снижения пластового давления от 5 — 7 до 1 МПа, а резкое снижение в продукции доли компонентов С10+ позво­ляет утверждать, что практического значения добыча этой высокомолеку­лярной части пластовой смеси в области давлений нормального испарения иметь не может, в отличие от легкой части пластовой смеси (фракции С2-С„).

Значения проницаемости, а также водонасыщенности вмещающей газоконденсатную смесь пористой среды в исследованной области практиче­ски не влияет на особенности процессов дифференциальной конденсации и нормального испарения газового конденсата.

Таким образом, при той газоконденсатной характеристике, какую имеет вуктыльская пластовая углеводородная смесь, динамика фазовых проницаемостей в пористой среде с типичными коллекторскими свойства­ми не столь драматична, как при разработке месторождения Нокс-Бромайд. Из средних по проницаемости и пористости объемов перового пространства вуктыльского пласта-коллектора на завершающей стадии разработки будут извлекаться углеводороды, в том числе за счет процесса нормального испарения. Естественно, в худших по сравнению со средними зонах коллектора возможны явления, из-за которых часть запасов углево­дородов будет блокирована и составит неизвлекаемые пластовые потери. На снижение потерь, в том числе и этих, направлено предложенное ВНИИГАЗом и реализуемое на Вуктыле в районе УКПГ-8 и УКПГ-1 воз­действие на пласт сухим неравновесным газом.


Afc , г/моль


115


105


о 1 • 2 Д 3


95


85

25

15

р,Мпя


Сайклинг-процесс

Увеличение коэффициента конденсатоотдачи, а нередко и газоотдачи при разработке газоконденсатных месторождений может быть достигнуто пу­тем возврата в пласт в течение определенного периода времени добытого газа, из которого предварительно извлечены компоненты С2+ или С3+. Та­кой режим разработки, обеспечивающий отбор пластового газа с началь­ным высоким или слабо уменьшающимся содержанием конденсата (благодаря поддержанию давления) получил название сайклинг-процесса. Впервые применять его начали в конце 30-х годов, в годы второй мировой войны, когда резко возросла потребность в жидких углеводородах как сы­рье для производства моторных топлив, а потребность в углеводородном газе, напротив, несколько уменьшилась. В 1944 г. в США функционировали 37 установок для осуществления сайклинг-процесса при общем количестве разрабатываемых газоконденсатных месторождений 224. Обратная закачка «отбензиненного» газа применялась в тот период времени не только в США, но и в Канаде и ряде других газодобывающих стран, причем даже на таких газоконденсатных месторождениях, начальное содержание кон­денсата в газе которых составляло всего 150—180 г/м3. По окончании вой­ны вследствие заметного изменения структуры потребления углеводородов и соответствующей динамики цен на жидкие и газообразные углеводороды объемы обратно нагнетаемого в пласт газа резко снизились. Удовлетвори­тельные технико-экономические показатели при реализации сайклинг-процесса стали получать только на ГКМ с начальным содержанием кон­денсата в газе не ниже 250 — 300 г/м3. Основной упор делался на реализа­цию вариантов частичного сайклинг-процесса, когда объем возвращаемого в пласт газа меньше объема газа, отбираемого из пласта. Одновременно значительно возросла доля нагнетаемых в пласт неуглеводородных газов. В целом, однако, количество объектов, на которых применялся сайклинг-процесс, очень сильно уменьшилось. Тем не менее часть газоконденсатных месторождений США, Канады, некоторых других стран разрабатывались и продолжают разрабатываться в режиме обратного нагнетания газа. Накоп­ленный опыт применения сайклинг-процесса в различных условиях и на месторождениях с разными геолого-промысловыми характеристиками по­требовал более глубокого обоснования каждого проекта разработки, пре­дусматривавшего возврат в пласт газа. Стала очевидной необходимость тщательного изучения характера неоднородности пласта — потенциального объекта нагнетания сухого газа. С другой стороны, исследования ВНИИ-ГАЗа доказали, что, во-первых, частичный сайклинг-процесс при низких пластовых давлениях может по своим показателям не уступать процессу при высоких, близких к начальному, давлениях, а во-вторых, можно по­высить эффективность процесса, если учитывать состав пластовой смеси. Речь идет о целесообразности использования влияния промежуточных уг­леводородов (этан-пропан-бутановой фракции) на испаряемость ретроград­ного конденсата в газовую фазу в послепрорывный период. При этом бы­ло показано, что испарение ретроградного конденсата — весьма длитель-нцй процесс, и в течение многих лет после прорыва закачанного газа воз-моЦно получать из скважин продукцию с высоким промышленным содер­жанием конденсата.

В связи с тем, что в рыночных условиях при колебаниях спроса на газ и жидкие углеводороды повышается вероятность реализации на россий- ских газоконденсатных месторождениях сайклинг-процесса, мировой опыт его применения представляет большой интерес [10, 26, 44].

Ниже анализируются результаты осуществления сайклинг-процесса зарубежом, а также результаты единственного, практически реализованного в странах СНГ сайклинг-процесса на Новотроицком ГКМ (Украина).

Опыт проектирования разработки крупнейшего газоконденсатного месторождения Канады Кэибоб чрезвычайно интересен в смысле комплек­сного решения проблемы использования полезных ископаемых с учетом требований по охране недр и окружающей среды.

Газоконденсатное месторождение Кэибоб, открытое в сентябре 1961 г., расположено в провинции Альберта, в 300 км к северо-западу от г. Эдмонтона. Продуктивные отложения, сложенные в основном пористы­ми доломитами, приурочены к рифогенному массиву верхнего отдела сви­ты Свои Хиллс, образующему вытянутую с северо-запада на юго-восток структуру длиной около 60 км и шириной 3,5 — 9 км. Эти отложения ос­ложнены межрифовым каналом значительных размеров, положение кото­рого четко не зафиксировано. Створ канала заполнен плотными известня­ками. По всей площади месторождения, пласты которого регионально по­гружаются в юго-западном направлении с наклоном 1,05 м/км, продуктив­ные отложения подстилаются темными битуминозными карбонатами ниж­него отдела свиты Свои Хиллс средней мощностью 33 м. Наряду с плотны­ми известняками здесь представлены и пористые доломиты. Мощность продуктивного горизонта изменяется в пределах от 0 до 109 м. Покрыш­кой залежи служат плотные битуминозные известняки свиты Беверхилл Лейк. Таким образом, ловушка газа и конденсата на месторождении Кэи­боб образовалась в результате литологического выклинивания и литологи-ческого экранирования в подошве и кровле.

Начальное пластовое давление в газоконденсатной залежи, приве­денное к абсолютной отметке средневесовой плоскости массива 2307 м, составляет 32,4 МПа. Пластовая температура (Т = 114 °С), как и давление, аномально высокая для глубин залегания около 2300 — 2350 м. Запасы пластового газа площади В составляли 93,5 млрд. м3, в том числе запасы товарного сухого газа — 63,3 млрд. м3, конденсата (С5+) — 40,6 млн. м3, сжиженных газов (С3 —С4) — 20,5 млн. м3, серы — 21,1 млн.т. В целом по месторождению запасы пластового газа были равны 110,6 млрд. м3, конденсата — 48 млн. м3.

Газоконденсатная залежь Кэибоб массивная. На западе она ограничена пересечением кровли рифа с ГВК, а на востоке — выклиниванием свиты Свои Хиллс, замещающейся плотными известняками. По данным ис­следования скважин, после вскрытия водонасыщенных отложений выяви­лось постепенное снижение пористости и проницаемости в направлении с северо-востока на юго-запад. Это снижение обусловлено как увеличением доли плотных рифогенных известняков, так и уменьшением пористости доломитовых интервалов. Средние значения пористости и проницаемости водоносной зоны составляют 6 % и 25-10-15 м2. По данным замеров давления в скважинах, расположенных за пределами ГВК, установили взаи­модействие водоносных зон пласта Д-3 месторождения Пайн-Крик и Беверхилл Лейк месторождения Кэибоб. Отбор 6,72 млрд.м3 газа из залежи Д-3 (Пайн-Крик) обусловил снижение давления на 0,34 МПа.

Расчеты показали, что в Пайн-Крик вторглось 16,54 млн. м3 воды, в том числе 10,32 млн. м3 — из зоны, подстилающей залежь Д-3. Остальная вода поступила из сопредельных водоносных областей, главным образом рифовой зоны Беверхилл Лейк. Это подтверждается снижением давления в залежи (площадь В) на 4,1 МПа.

Продуктивность и приемистость рассчитывались на основании данных по исследованию скважин с использованием известной степенной зависи­мости дебита от разности квадратов пластового и забойного давлений. Ре­зультаты обработки данных исследования применялись для построения карты равной производительности скважин, с помощью которой определя­ли параметр С в уравнении притока для неисследованных скважин. Макси­мально допустимая депрессия устанавливалась, исходя из необходимости предотвращения образования конуса воды, на уровне 0,012 МПа/м в про­дуктивной мощности ниже нижних перфорационных отверстий. Допуска­лось превышение этого значения вплоть до 0,023 МПа/м.

Газоконденсатная система месторождения Кэйбоб была недонасыщена высококипящими углеводородами — давление начала конденсации находи­лось на уровне 23,4 МПа. Компонентный состав пластовой смеси приведен в табл. 1.19.

Хотя в интервале снижения давления 32,4—23,4 МПа жидкая фаза в пласте не образуется, дальнейший отбор газоконденсатной смеси сопро­вождается интенсивным выпадением конденсата вплоть до давления макси­мальной конденсации рмк = 8,1— 8,4 МПа. Максимальная доля углеводо-роднасыщенного перового объема, занятая выделившимся стабильным конденсатом, составляет 5,0 %. В соответствии с изотермой текущего кон-денсатосодержания коэффициент извлечения стабильного конденсата при разработке на режиме истощения (рист =4,1 МПа) без учета продвижения подошвенной воды составляет 63 — 65 %. Такая сравнительно высокая кон-денсатоотдача обусловлена сильным недонасыщением пластовой смеси, в результате которого около 17 % от запасов конденсата отбирается до нача­ла выпадения его в пласте. Высокая концентрация в пластовой смеси серо­водорода, пропан-бутанов и конденсата определяет сравнительно низкое соотношение между объемами остаточного (сухого) и жирного газов — молярная доля остаточного газа в смеси даже при рмк не превосходит 0,712.

Физико-химические свойства пластовой смеси

Плотность газа, кг/м3............................................................. 1,03

Псевдокритическая температура, К..................................491

Псевдокритическое давление, МПа...................................5,32

Вязкость газа при давлении 32,2 МПа, мПа-с................0,036

Содержание сжиженных газов, см33............................ 219

Содержание конденсата (С5+), см33............................. 434

Содержание серы, г/м3.......................................................... 225

Компонент

Содержание компонента

% (молярная доля)

см33 газа

Азот

1,12

Углекислый газ

3,42

Сероводород

16,70

-

Метан

58,56

Этан

7,56

-

Пропан

3,12

114,0

н-Бутан

1,66

71,4

Изобутан

0,78

33,5

н-Пентан

0,78

38,0

Изопентан

0,67

33,0

Гексан

1,21

67,1

Гептан + высшие

4,42

295

Всего

100,00

562

Компонентный состав пластовой смеси

Для изучения процессов вытеснения газа водой, жирного газа сухим, а также некоторых сопутствующих им явлений пользовались различными математическими моделями. Основные расчеты технологических показате­лей разработки были выполнены применительно к трехмерной трехфаз­ной модели. Математическая модель описывает нестационарное течение двух- или трехфазной системы с учетом вязкости, капиллярных и гравита­ционных сил. Все агенты считаются сжимаемыми, а их свойства (объем­ный фактор, вязкость) полагаются однозначными функциями давлений. Фазовые проницаемости задаются в виде функций. При решении данной задачи использовалась концепция «вертикального равновесия», позволяю­щая свести трехмерную фильтрацию к двухмерной. Согласно этой концеп­ции, потенциалы фаз Фжг, Фсг и Фв — постоянны по мощности пласта. Это означает, что давление по вертикали (мощности) изменяется по зако­нам гидростатики, т. е. пластовая система находится в состоянии капилляр­но-гравитационного равновесия. Строго говоря, данная концепция равно­значна допущению о бесконечно большой проницаемости — по вертикали. На практике же достаточным основанием для использования «вертикально­го равновесия» является высокая проницаемость по вертикали, существен­ное проявление гравитационных эффектов, низкие вязкости агентов и т. п. Все эти условия характерны для месторождения Кэйбоб, в связи с чем концепцию «вертикального равновесия» применили для расчетов продвиже­ния подошвенной воды в залежь, а также перемещения границы газ — газ при процессе рециркуляции газа. В результате решения соответствующей системы уравнений получается распределение насыщенностей (площадное) в каждой ячейке моделируемой области фильтрации. Допущение верти­кального равновесия позволяет установить распределение насыщенности и по мощности залежи (высоте ячейки). Таким образом, метод вертикально­го равновесия позволяет существенно облегчить (не в ущерб точности ре­зультатов) решение задачи.

На основании приведенной методики произвели расчеты продвижения воды в газонасыщенную часть залежи, а также текущего объемного коэф­фициента охвата. Кроме того, с помощью метода материального баланса рассчитали показатели добычи газа и конденсата для различных способов разработки месторождения. В указанных расчетах были сделаны следую­щие допущения.

1. Для различных вариантов процесса обратной закачки сухого га­за начальная мощность промысла по газу устанавливалась на уровне 133 % от номинальной пропускной способности газоперерабатывающего завода без дополнительного бурения эксплуатационных скважин.

2. Для вариантов разработки на режиме истощения, а также истоще­ния с компенсацией пиковых нагрузок за счет резервных мощностей ГПЗ и закачкой избыточных объемов газа в пласт в периоды пониженного по­требления предусматривалась мощность промысла по газу, обеспечивающая удовлетворение пиковых потребностей с бурением при необходимос­ти дополнительных скважин.

3. Расход газа на топливо и собственные нужды промысла принимался на уровне 5 % от суммарного объема остаточного газа.

4. Среднее пластовое давление однозначно определяет состав продук­ции скважины. Испарение выпавшего конденсата не принимается в расчет при определении добычи конденсата.

5. Вторжение воды так же влияет на состояние пластовой газоконденсатной системы, как и закачка газа; поэтому под коэффициентом охвата понимается отношение объема порового пространства, занятого закачивае­мым газом и вторгшейся водой, к суммарному поровому объему, занятому углеводородами.

6. Учет влияния темпа вторжения воды обеспечивается проведением расчетов для различных факторов обводнения. Фактору обводнения (ФО-0) соответствует газовый режим, т. е. продвижение воды отсутствует. При ФО-1 вода продвигается с темпом, рассчитанным по упомянутой методике на основании приведенных исходных данных. При ФО-2 темп вторжения воды в 2 раза превышает предыдущий.

7. Закачка газа прекращается по достижении коэффициента охвата, равного 55 %, для всех вариантов.

8. В период доразработки на истощение соотношение отборов сухого и жирного газов поддерживается таким же, каким оно является в момент прекращения рециркуляции.

9. Давление при режиме истощения залежи, исходя из минимально допустимого давления на устье 2,1 МПа, составляет 4,1 МПа для всех вари­антов.

10. Суточный темп отбора газа в период доразработки определялся из условий контракта на продажу в объеме 1/8400 от извлекаемых запасов газа.

Результаты тщательного математического моделирования процесса разработки площади В месторождения Кэйбоб свидетельствуют о безуслов­ной перспективности способа разработки при частичной закачке газа даже в условиях, когда разработка на режиме истощения характеризуется срав­нительно высокой конденсатоотдачей,

При разработке газоконденсатного месторождения Нокс-Бромайд, за­легающего на большой глубине (4600 м), с поддержанием давления путем рециркуляции газа повышалась не только конденсатоотдача, но и газоотда­ча. Именно поэтому оправданы чрезвычайно высокие капиталовложения для поддержания давления на месторождении (стоимость одной скважины Нокс-Бромайд достигала 1 млн. долл.).

Месторождение расположено в штате Оклахома (США). Открытое в 1956 г., оно разрабатывалось на режиме истощения с 1960 до 1962 г. За этот период было добыто 538 млн. м3 газа и 480 тыс.м3 конденсата. Продук­тивные горизонты месторождения II и III представлены весьма плотными песчаниками с низкими коллекторскими свойствами (пористость 4,5 — 6,8 %, проницаемость 45,10-15 м2, водонасыщенность 11 %). Структура представля­ет собой вытянутую с северо-запада на юго-восток антиклиналь размерами 16x2 км. Запасы газа в двух горизонтах составляли 8,1 млрд.м3, запасы — конденсата (точнее, широкой фракции С3+) — около 6 млн. м3. Содержа­ние фракции С3+ в газе горизонта II — 1030 см33, в газе горизонта III — 510 см33.

Начальное пластовое давление (расчетное) было равно 65,7 МПа, пластовая температура 114 °С. Давление начала конденсации рнк пластового газа горизонта II равно 45,1 МПа, горизонта III P 38,9 МПа. Отметим, что, наряду со значительным превышением пластового давления над гидростатическим (в 1,3—1,4 раза), пластовой газоконденсатной системе было свойственно исключительно большое нефтенасыщение конденсатом: рнк отличается от рпл для горизонта II на 20,6 МПа, а для горизонта III на 26,8 МПа.

Лабораторные и промысловые исследования показали, что специфиче­ские особенности строения песчаника свиты бромайд обусловливают рез­кое снижение его фазовой проницаемости для газа по мере выпадения конденсата в пласте. При изучении шлифов кернов было обнаружено на­личие на зернах песчаника конденсатной пленки, резко снижающей про­ницаемость породы. Полученная исследователями кривая фазовой проница­емости по газу свидетельствовала о том, что фильтрация газа практически прекращается по достижении насыщенности жидкой фазой 50 %. Именно в результате этого ожидался исключительно низкий коэффициент газоотда­чи при разработке на режиме истощения (11 %). Иными словами, выпадаю­щий в призабойной зоне конденсат "запирает" газ в залежи. По данным расчетов, разработка на режиме истощения позволяла добыть всего около 900 млн. м3 газа и 850 тыс. м3 конденсата: тем самым рентабельная разра­ботка месторождения прекратилась бы уже в 1965 г. В то же время разра­ботка при поддержании давления обеспечивала извлечение 5 млрд. м3 газа и 5,25 млн. м3 конденсата. Давление в пласте (в призабойной зоне) следовало поддерживать более высоким, чем рнк. По-видимому, в данном случае опти­мальным условием является рзаб > рнк (выпадающий в призабойной зоне конденсат, несмотря на высокую насыщенность, остается малоподвижным или вообще неподвижным в связи с крайне низкими фильтрационными характеристиками среды).

Согласно проекту разработки с рециркуляцией газа, из десяти имею­щихся эксплуатационных скважин три предполагалось перевести под на­гнетание. Объем закачки намечался на уровне 450 — 600 тыс. м3/сут, темп отбора - 400 — 500 тыс. м3/сут. Около 20 % закачиваемого газа приобрета­ется со стороны; этот газ компенсирует уменьшение объема добываемого его количества за счет выделения конденсата, расхода на топливо, а также изменения сжимаемости газа по мере выделения конденсата.

При довольно низкой продуктивности скважин на месторождении Нокс-Бромайд предполагалось широко использовать мероприятия по ин­тенсификации притока и, в первую очередь, гидроразрыв пласта. Успеш­ное проведение в 1960 г. на скважинах Нокс-Бромайда гидроразрыва впер­вые в мире было осуществлено на глубине 4600 — 4800 м. Применение про­цесса рециркуляции на этом месторождении, несмотря на огромные труд­ности технического, технологического и экономического характера, лиш­ний раз подтверждает большие возможности этого способа разработки.

В качестве интересного примера разработки газоконденсатного место­рождения с применением обратной закачки газа можно привести место­рождение Ла Глория, на котором поддерживалось давление в течение 8 лет. В то время это был один из самых больших проектов по закачке газа с целью получения конденсата в штате Техас.

Залежь приурочена к структуре овальной формы. Продуктивная пло­щадь составляет 1070 га. Этаж газоносности около 100 м.

В процессе разведки залежи и эксплуатационного бурения было про­бурено около 40 скважин.

Глубина залегания продуктивного горизонта в центре структуры 1955 м. Средняя мощность песчаника в этой зоне 10 м. Средняя пористость его 22,2 %, проницаемость 0,52·10-12м2. Начальное пластовое давение 23,9 МПа, температура 95 °С. Содержание связанной воды оценивалось в 20 %.

Запасы газа в залежи равнялись 3,95 млрд. м3 (при нормальных услови­ях). Запасы конденсата (пропан+ ) составляли 1,07 млн. м3. Из этого коли­чества пентаны + составляли 0,639 млн. м3, изо- и нормальные бутаны 0,178 млн. м3 и пропан 0,252 млн. м3.

Закачка газа на месторождении Ла Глория началась в мае 1941 г. К этому времени на месторождении было шесть продуктивных и две нагне­тательные скважины. В последующие годы число эксплуатационных сква­жин увеличилось до восьми, а нагнетательных до четырех. В течение пер­вых 4 лет из пласта в среднем отбиралось 1415 тыс. м3/сут газа. В дальней­шем ввиду того, что нагнетаемый сухой газ стал прорываться в эксплуата­ционные скважины, отбор из пласта уменьшили до 595 тыс. м3/сут.

За все время нагнетания в пласт было возвращено 97 % добытого су­хого газа. Для обслуживания установки газ получали со стороны.

Благодаря малым темпам отбора и возврату практически всего добы­того сухого газа пластовое давление снизилось очень незначительно. По­этому было предотвращено выпадение конденсата в пласте и его потери. Это подтверждается тем, что в продукции скважины, пробуренной в за­ключительной стадии процесса в зоне, не охваченной нагнетанием сухого газа, содержание конденсата не отличалось от начального.

В процессе закачки газа с целью контроля за его перемещением по пласту из каждой скважины раз в три месяца отбирались пробы газа для определения содержания конденсата.

Исследования показали, что в зоне, охваченной закачкой газа, коэф­фициент вытеснения достигал 80 %. Коэффициент охвата при выбранном расположении нагнетательных и эксплуатационных скважин по расчетам составлял 85 %.

Следовательно, в результате проведения процесса из пласта было до­быто 68 % первоначально содержащегося конденсата. При последующей эксплуатации пласта на истощение было добыто еще 20,8 % конденсата. Всего из пласта было отобрано 88,8 % первоначально содержащегося кон­денсата (С5+).

Нагнетание сухого газа прекратили в середине 1949 г., когда содержа­ние конденсата в продукции резко уменьшилось.

При разработке отечественных газоконденсатных месторождений не­однократно предпринимались попытки реализовать сайклинг-процесс, од­нако, как правило, дело ограничивалось физическим или математическим моделированием, а также проведением технико-экономических расчетов.

Одним из возможных объектов применения сайклинг-процесса было крупнейшее в европейской части России Вуктыльское газоконденсатное месторождение. Во ВНИИГАЗе были выполнены расчеты по извлечению конденсата из Вуктыльского месторождения при закачке сухого газа на различных уровнях пластового давления.

Общий коэффициент извлечения конденсата для Вуктыльского место­рождения за счет его растворения в сухом газе согласно расчетам не пре­вышал 70 — 75 %, т.е. по сравнению с разработкой на истощение коэффициент извлечения конденсата мог быть увеличен на 30 — 35 %. Объясняется это значительным утяжелением фракционного состава конденсата, выпав­шего в пласте, в процессе закачки сухого газа. Автор расчета Г.С. Степа­нова полагала, что достичь такого увеличения коэффициента извлечения выгоднее при "меньшем" объеме закачиваемого газа, т.е. при более высо­ком давлении. В этом случае и фракционный состав добываемого конден­сата будет тяжелее и, следовательно, коэффициент извлечения его из газа на промысловых установках будет выше. Если закачка газа осуществляется при давлении 5 — 6 МПа, то в газовую фазу переходят фракции конденсата, выкипающие до 150—180°С (т.е. бензиновые фракции), в количестве около 60 г/м. Низкие давления на устье эксплуатационных скважин приводят к необходимости компримирования газа и его последующего охлаждения. Для выделения конденсата в этом случае необходимо осуществлять сепара­цию при достаточно низких температурах — в пределах минус 40 — минус 50 °С или применять процесс адсорбции. Если же газ закачивать при плас­товых давлениях выше 20 МПа, то для создания низких температур в сепа­раторе можно использовать турбодетандеры.

Одним из авторов работы [52] была обоснована схема использования турбодетандера при относительно низких пластовых давлениях (около 10 МПа). При этом трубодетандер устанавливался перед дожимной ком­прессорной станцией. В условиях Вуктыльского месторождения такая схе­ма позволила определенное время вести подготовку газа и конденсата к транспорту более эффективно.

Основной недостаток, мешающий внедрению турбодетандеров для со­здания низких температур, — это изменяющийся перепад давления на турбодетандере при снижении давления в залежи. Если закачка газа будет осу­ществляться в течение длительного времени, турбодетандеры экономически окажутся значительно выгодней, чем холодильные установки. Для макси­мального извлечения конденсата из добываемого газа следует применять процессы низкотемпературной масляной адсорбции или короткоцикловой адсорбции. Тогда потери конденсата будут минимальными и эффект от за­качки сухого газа в пласт будет наибольшим.

Как известно, сайклинг-процесс на Вуктыльском месторождении не был осуществлен и с 1968 г. оно разрабатывалось на режиме истощения. Основными причинами для отказа от возврата газа в пласт стали опасения низкого охвата пласта (не более 20 %) нагнетаемым агентом в условиях резко неоднородного трещиноватого коллектора; решение остановиться на способе разработки более экономичном с точки зрения материальных и финансовых затрат; отсутствие в стране налаженного производства высо­конапорного компрессорного и трубопроводного оборудования; психоло­гическая неподготовленность специалистов вести разработку на ином, не­жели истощение, режиме отбора запасов.

Открытие уникальных по запасам газоконденсатных месторождений с высоким содержанием в газе ценных высокомолекулярных углеводород­ных компонентов (табл. 3) побудило газовиков России, а также Казах­стана вновь обратиться к проблеме разработки ГКМ с поддержанием плас­тового давления. Были выполнены технико-экономические оценки и подго­товлены проектные решения, согласно которым реализация сайклинг-процесса на Уренгойском, Карачаганакском и других ГКМ обеспечивала уве­личение конденсатоотдачи продуктивных пластов не менее чем на 10 %. Практически, однако, до настоящего времени нет уверенности в том, что предусмотренное проектами разработки этих объектов нагнетание сухого газа будет осуществлено. Кроме тех причин, что воспрепятствовали внед­рению сайклинг-процесса на Вуктыльском месторождении, в последние го­ды стала играть важную роль еще одна — экспортные обязательства по поставкам крупных объемов природного газа в европейские страны при одновременном снижении финансируемых потребностей в газе.

И все же в странах СНГ несколько лет назад удалось довести до прак­тического осуществления один проект разработки ГКМ на режиме сайк­линг-процесса, хотя и с задержкой во времени и при давлении в пласте, меньшем проектного, — на Новотроицком месторождении на Украине. Проект был подготовлен специалистами ВНИИГАЗа и УкрНИИгаза под ру­ководством С.Н. Бузинова, И.Н. Токоя, Е.И. Степанюка.

Новотроицкое газоконденсатное месторождение открыто в 1966 г., когда был получен приток газа с конденсатом из скв. № 4, и введено в разработку на истощение в 1974 г.

Газоконденсатная залежь приурочена к отложениям нижнего карбона горизонта В-23 визейского яруса, залегает в интервале глубин 3280 — 3390 м. Начальные запасы газа утверждены в объеме 11 620 млн. м3, конденсата 5200 тыс. т (извлекаемые 2590 тыс. т). Начальное содержание конденсата в отсепарированном газе 454,5 г/м3, начальное пластовое давление составляло 35,6 МПа. Средняя эффективная мощность продуктивного пласта 16 м, средняя проницаемость 1,02-10-12 м2.

К моменту подсчета запасов газа (1973) считалось, что Новотроицкое поднятие достаточно детально изучено; оно представлялось асимметричной брахиантиклинальной складкой, разделенной единственным тектоническим нарушением, подсечевным скв. 4, на два блока (северо-западный и юго-восточный). Эти представления о геологическом строении были приняты за основу при составлении проекта разработки 1976 г.

Бурение эксплуатационных скважин внесло существенное изменение в представление о геологическом строении залежи. В 1984 г. при анализе разработки месторождения был пересмотрен весь имеющийся геологический материал и выполнены новые структурные построения. Для более уверен­ной корреляции разрезов скважин, помимо стратиграфических границ вну­три стратиграфических комплексов, были выбраны хорошо выдержанные по площади реперные пласты, что позволило более детально проследить характер изменения мощностей в разрезах скважин и точнее определить глубины подсечения ими тектонических нарушений.

На основании новых для того времени представлений о строении Новотроицкого месторождения юго-восточная часть залежи характеризова­лась относительно простым строением. Северо-западная часть складки отличалась вместе с тем очень сложным блоковым строением, которое, несмотря на большое число пробуренных скважин, оставалось не до кон­ца выясненным. Блоковое строение в этой части месторождения затруд­няло размещение системы нагнетательных и эксплуатационных сква­жин.

Таким образом, геологическое строение Новотроицкой залежи оказа­лось значительно сложнее, чем предполагалось по результатам разведочных работ (когда было пробурено 16 скважин). По данным бурения эксплуата­ционных и нагнетательных скважин был выявлен ряд нарушений, блоков и локальных поднятий в пределах площади газоносности.

За период разработки месторождения на истощение (1974— 1979 гг.) из месторождения было добыто 2144 млн. м3 газа и 658,2 тыс. т конденсата, при этом пластовое давление снизилось на 7,5 МПа. Отбор газа был на 320 млн. м3 выше проектного. Содержание конденсата в пластовом газе уменьшилось до 317 г/м3 а потери его в пласте составили около 1500 тыс. т.

В связи с отставанием обустройства в период 1979— 1981 гг. месторож­дение находилось в консервации. За это время вследствие проявления водо-' напорного режима пластовое давление в залежи увеличилось с 27,4 до 28,1 МПа. Подъем ГВК составил около 7 м.

Закачка сухого газа в пласт была начата в июне 1981 г. Добыча сырого газа осуществлялась из четырех скважин, а закачка — в две нагнетатель­ные скважины № 30 и 36. Приемистость нагнетательных скважин в начале закачки соответствовала проектной. Однако впоследствии было отмечено существенное ее снижение, обусловленное загрязнением призабойных зон скважин компрессорным маслом. Поэтому начали проводить периоди­ческую продувку нагнетательных скважин в газопровод. При этом приемистость скважины улучшалась, но полного восстановления не проис­ходило.

На основе новых представлений о геологическом строении месторож­дения были пересмотрены первоначальные проектные решения по числу нагнетательных и эксплуатационных скважин, объемам добычи и закачки газа. Объем закачки газа был установлен в количестве 230 млн. м3.

В 1984 г. был проведен детальный анализ обводнения залежи. С помо­щью математического моделирования воспроизведена 9,5-летняя история разработки месторождения, определены эффективные параметры водонос­ного пласта. Сопоставляя геологические построения с данными материаль­ного баланса, оценили среднюю остаточную газонасыщенность обводнен­ного порового объема — 0,54, причем 7 % перового пространства занято выпавшим конденсатом. Столь высокое значение средней остаточной газо­насыщенности свидетельствовало о том, что за фронтом обводнения газ оставался не только в защемленном состоянии. Подъем ГВК составил око­ло 30 м.

Динамика добычи газа и конденсата приведена в табл. 1.21. На 01.09.87 из месторождения было извлечено 3948 млн. м3 газа и 1169 тыс.т конденса­та. Суммарная добыча конденсата за период сайклинг-процесса составила 510,8 тыс. т, закачка сухого газа в пласт — 1443 млн.м3.

Сравнение двух технологий — сайклинг-процесса и истощения — бы­ло проведено по добыче конденсата при условии одинаковой накопленной добычи. В табл. 1.21 приведены данные по дополнительной добыче конден­сата при сайклинг-процессе по отношению к разработке залежи на исто­щение. Вариант истощения был рассчитан с найденными по истории раз­работки эффективными параметрами водоносного пласта.

. Это было обусловлено образованием "конденсатного вала" вбли­зи забоев этих скважин в результате продвижения контурных вод. Продук­ция скв. 34 в течение 1984—1985 гг. постепенно осушалась (до 166 г/м3). Во второй половине 1986 г. к ее забою также подошел "конденсатный вал", в связи с чем удельный выход конденсата повысился до 250 г/м3. Более всего оказалась осушена продукция скв. 13: доля сухого газа составляла 79 %.

Подготовка газа для закачки в пласт осуществлялась методом низко­температурной сепарации с охлаждением газа пропановой холодильной ус­тановкой. Газоконденсатная смесь из эксплуатационных скважин поступа­ла на УКПГ, где в сепараторах первой ступени при давлении 12,5 МПа и температуре 298 К происходило отделение капельной жидкости от газа. После этого газ подавался в теплообменник, где охлаждался за счет холода, получаемого от пропановой холодильной установки и при давлении 10,5 — 11,0 МПа направлялся в низкотемпературный сепаратор второй ступени, где происходило разделение сконденсировавшейся жидкости и газа. Отсепарированный газ при температуре 263 — 258 К и давлении 10,5—11,0 МПа содержал 30 — 32 г/м3 конденсата. С целью повышения извлечения конден­сата технология низкотемпературной подготовки газа была дополнена аб­сорбцией в потоке. В качестве абсорбента был использован тяжелый кон­денсат I ступени сепарации. Это дало возможность дополнительно извлечь 10—17 г/м3 конденсата из газа, закачиваемого в пласт.

Закачка газа в пласт осуществлялась тремя газомоторными ком­прессорами 10ГКНА 1/(100-12)-(200-275) производительностью 480-620 тыс. м3/сут. каждый, работающими параллельно. В процессе эксплуа­тации компрессорной станции был выявлен и устранен ряд факторов, сни­жающих работоспособность компрессоров: заменены втулки компрессор­ных цилиндров; изменена конструкция поршней и сальников штока; удво­ена подача лубрикаторной смазки поршней, заменена запорная арматура обвязки компрессоров на импортную; установлены фторопластовые филь­тры конструкции УкрНИИгаза на входе газа в компрессоры и на линиях нагнетания в скважины; изготовлено и установлено общестанционное за­грузочное кольцо для обкатки компрессоров после ремонтов, предусмотре­ны дренаж для удаления жидкости из обвязки узла продувки всасывающего коллектора, а также буферных емкостей; произведен ремонт фундаментов и опор.

Экономическая оценка разработки Новотроицкого месторождения показывала высокую себестоимость добычи газа и конденсата. Однако опыт реализации проекта весьма ценен для газопромысловиков.

Анализ разработки Новотроицкого ГКМ позволил сделать следующие выводы.

1. Новотроицкое месторождение характеризуется сложным геологиче­ским строением, выявленным в процессе осуществления сайклинг-процесса и существенно повлиявшим на первоначальные проектные решения. Для обеспечения разработки месторождения в режиме сайклинг-процесса необ­ходимо было провести детальную разведку залежей как разведочными, так и опережающими эксплуатационными скважинами.

2. На месторождении сайклинг-процессу предшествовала разработка в режиме истощения. В условиях проявления водонапорного режима это привело к защемлению значительных количеств газа за фронтом вытесне­ния. Наиболее высокий технологический и экономический эффект мог быть получен при применении сайклинг-процесса без предварительного от­бора газа.

3. При подготовке проекта необходимо предусматривать обвязку на­гнетательных и эксплуатационных скважин по одной схеме — как на на­гнетание, так и на отбор. Это позволит осуществлять оперативное регули­рование разработки, очистку забоя скважин и т.д.

4. При проектировании установок подготовки газа для осуществления сайклинг-процесса в зависимости от конкретных условий и возможностей необходимо:

а) применять установки с низкотемпературной абсорбцией при давле­нии около 11,0 МПа;

б) использовать установки низкотемпературной сепарации при давле­нии максимальной конденсации 5,5 — 6,5 МПа с турбодетандером с после­дующим поджатием газа до давления 11,0 МПа компрессором, находящим­ся на одном валу с турбодетандером (наиболее экономичный вариант);

в) устанавливать перед компрессорной станцией фильтры для очистки газа от твердых примесей, а после компрессорной станции — маслоулови­тели для защиты нагнетательных скважин от масла, попадающего в газ при его компримировании.


Информация о работе «Разработка месторождений газоконденсатного типа»
Раздел: Геология
Количество знаков с пробелами: 132098
Количество таблиц: 18
Количество изображений: 7

Похожие работы

Скачать
12286
0
6

... и тем самым делает процесс разработки месторождений более затратным. Одним из направлений снижения затрат является внедрение передовых компьютерных технологий в практику проектирования и управления разработкой нефтяных и газоконденсатных месторождений. Нефтяные компании все больше и больше стали применять геофизику и компьютерное моделирование, дающие более точные модели залежей и точно ...

Скачать
45377
1
7

... результаты разработки нефтегазовых и газоконденсатнонефтяных залежей приведены в [47-53]. 2. Моделирование процессов статического конусообразования при разработке нефтегазовых и газоконденсатнонефтяных залежей 2.1 Сущность проблемы конусообразования Большинство нефтяных, газоконденсатнонефтяных, нефтегазовых и газовых залежей, разрабатываемых в настоящее время, подстилаются частично или ...

Скачать
39827
3
4

... в 22 скважинах, нижняя – в 44 скважинах. Остальные эксплуатируют верхнюю и нижнюю части одновременно. В настоящее время на Ямсовейском газоконденсатном месторождении находятся в эксплуатации четыре газоконденсатных скважины, пробуренные на ачимовские отложения. Были проведены исследования физико-химических свойств газового конденсата и дана его оценка как углеводородного сырья для производства ...

Скачать
58486
2
0

... нефть и газ. Это потребовало объяснить происхождение нефти и газа, дало мощный толчок развитию геологии – науки о составе, строении и истории Земли, а также методов поиска и разведки нефтяных и газовых месторождений. Поисковые работы на нефть и газ осуществляются последовательно от регионального этапа к поисковому и далее – разведочному. Каждый этап подразделяется на две стадии, на которых ...

0 комментариев


Наверх