Разработка Новотроицкого месторождения в режиме сайклинг-про-цесса при существовавших оптовых ценах предприятий на газ и конденсат являлась убыточной

132098
знаков
18
таблиц
7
изображений

5. Разработка Новотроицкого месторождения в режиме сайклинг-про-цесса при существовавших оптовых ценах предприятий на газ и конденсат являлась убыточной.

Для газоконденсатных месторождений, на которых планируется внед­рение сайклинг-процесса, необходимо устанавливать льготные индивидуаль­ные оптовые цены предприятий.

Автор настоящей работы полагает, что возможности сайклинг-процес­са изучены и используются недостаточно. Это касается, например, области применения данной технологии при умеренных и низких пластовых давле­ниях, в частности, на завершающей стадии разработки газоконденсатных месторождений, а также особенностей ее применения на месторождениях с разными составами пластовых углеводородных смесей.

В связи с этим были предприняты широкомасштабные теоретические и экспериментальные исследования.

Был изучен механизм и эффективность углеводородоотдачи при закач­ке в газоконденсатную залежь сухого газа на различных стадиях истоще­ния пласта.

С использованием метода, основанного на концепции давления схож­дения, и уравнения состояния Пенга — Робинсона проведено математичес­кое моделирование природной газоконденсатной системы. В качестве при­мера были взяты термобарические условия и состав углеводородной смеси, характерные для одного из месторождений Днепрово-Донецкой впадины (Западного свода Березовского газоконденсатного месторождения). Углево­дородная система имела следующий начальный состав: С, — 81,2 %; С2 — 7,32 %; С3 - 3,13 %; С4 - 1,12 % и С5 - 6,14 %, углеводороды С5+ модели­ровались тремя фракциями: Ф, — 18 % (Ммол = 107); Ф2 — 79 % (Ммол = = 161)иФ3 = 3% (Ммод = 237). Начальные пластовые давление и темпера­тура равнялись соответственно 51 МПа и 113 °С.

Были получены данные по динамике конденсатогазового фактора (КГФ) и насыщенности перового пространства жидкой фазой. Давление начала конденсации практически равняется начальному пластовому давле­нию. Начальный КГФ составляет 420 г/м3. При давлении максимальной конденсации 7,7 МПа КГФ = 45 г/м3. Максимальное значение насыщенно­сти перового пространства жидкой фазой достигает 12 %. Коэффициент извлечения углеводородов С5+ при истощении до 2 МПа при данных плас­товых термобарических условиях не превышает 32 %.

Процесс закачки в пласт сухого газа был рассмотрен при следующих пластовых давлениях: 22; 16; 7,7; 6 и 3 МПа. При давлениях 22 и 16 МПа система находится на ветви ретроградной конденсации (рис. 1,35, а). Давление максимальной конденсации составляет 7,7 МПа, и при давлениях 6 и 3 МПа система расположена на ветви прямого испарения. Конден-сатогазовый фактор пластового флюида при давлениях 16 и 3 МПа одина­ков.

Методика расчета процесса вытеснения сухим газом пластовой системы основана на решении дифференциальных уравнений многоком­понентной фильтрации безытерационным численным методом в допу­щении изотермичности процесса, локального термодинамического равнове­сия и справедливости обобщенного закона Дарси для фаз.

Расчеты были проведены для линейной модели пласта длиной 3 м, по­ристостью 25 % и проницаемостью 4,7-10~15 м2, заполненной при выбран­ных давлениях смесями, соответственно моделирующими пластовую смесь. Сухой газ моделировался метаном.

Метан в процессе фильтрации вытесняет равновесную пластовую газо­вую фазу и вызывает интенсивный массообмен между фазами, приводя­щий к существенному испарению ретроградного конденсата и снижению насыщенности перового пространства модели пласта углеводородной жид­костью. При этом насыщенность жидкой фазой всегда существенно ниже "критической", т.е. жидкая фаза неподвижна и весь массоперенос происхо­дит в газовой фазе.

Прокачка двух поровых объемов метана при давлении 22 МПа позво­ляет извлечь практически 100 % С2 —С4 и 32 % углеводородов С5+. При этом фракция Ф, (Ммол = 107) извлекается на 72 %, Ф2 (М„т = 161) — на 19 %, а Ф3мол = 237) — на 9 %. При более низких пластовых давлениях прокачка двух поровых объемов модели пласта дает существенно более низкое извлечение углеводородов С5+, а тяжелая фракция Ф3МОЛ = 237) практически не вытесняется.

Для сравнения эффективности процесса при разных пластовых давле­ниях следует привести объемы закачиваемого газа к одной единице изме­рения. В качестве такой единицы выбрано необходимое количество метана для прокачки одного перового объема пласта при давлении 22 МПа.

Расчеты показывают (рис. 1.35, б), что для давления 3 и 6 МПа (ветвь прямого испарения) для полного извлечения углеводородов С2 — С4 требует­ся существенно меньшее количество закачиваемого газа. Компоненты С5 — С8 (рис. 1.35, в) извлекаются при давлениях ниже давления максимальной конденсации полнее, чем при давлениях до максимальной конденсации ( в исследуемом диапазоне). И лишь наиболее тяжелые фракции (Ммол = 161 и выше) эффективно переходят в газовую фазу при более высоких пласто­вых давлениях. Так, для добычи всех запасов углеводородов С2 — С4 следует прокачать 0,3 относительной единицы измерения объема закачиваемого метана при давлении 3 МПа и около двух — при давлениях 16 и 22 МПа. Прокачка двух относительных единиц измерения метана позволяет извлечь 80 % фракции Ф, при давлениях воздействия 3 МПа, 65 % при 6 МПа, 60 % при 7,7 МПа, 57 % при 16 МПа и 72 % при 22 МПа. В целом, с учетом до­полнительного извлечения при истощении до более низких давлений, при равном количестве закачиваемого сухого газа извлечение углеводородов С5+ в диапазоне давлений 3 — 7,7 МПа соизмеримо с извлечением при воз­действии в диапазоне давлений 7,7 — 22 МПа (рис. 1.35, г).

Таким образом, исследования, с одной стороны, показали, что воздей­ствие на газоконденсатный пласт неравновесным газообразным агентом (сухой газ) в областях прямого испарения не снижает удельную компонентоотдачу (на 1 м3 закачиваемого газа) пласта по сравнению с воздействием при более высоких пластовых давлениях. С другой стороны, технико-эко­номические показатели такого процесса, особенно для месторождений с целевыми продуктами углеводородов С2 — С8, могут оказаться существенно выше за счет снижения объемов консервируемого газа, возможности бес­компрессорной закачки и более высокого коэффициента охвата.

Был выполнен также большой объем теоретических и эксперимен­тальных исследований с целью научного обоснования таких методов повы­шения конденсатоотдачи при разработке ГКМ, которые базируются на учете особенностей группового и компонентного состава пластовой углево­дородной смеси, что позволяет повысить степень извлечения высокомоле­кулярных углеводородов этой смеси.

Как известно, многообразие составов природных газов определяет — наряду с особенностями вмещающих горных пород и термобарических ус­ловий залежей — физическое состояние в пласте газовой смеси, наличие и относительное содержание жидкой, а иногда твердой фазы в смеси. Есте­ственно, что от состава углеводородной смеси зависит и конденсатоотдача пласта при разработке его на режиме истощения.

Среди других составляющих особую роль в природных газовых сме­сях играют промежуточные углеводороды — этан, пропан, изо- и нормаль­ный бутан. Суммарное их содержание в газовых смесях газовых залежей составляет в среднем до 5 %, газоконденсатных 5 — 30 %; в растворенных газах нефтяных месторождений содержится от 10 —20 до 85 — 95 % проме­жуточных углеводородов [46, 16]. Количественное содержание в природных газах низкомолекулярных гомологов метана, в частности фракции С2 — С4, определяется условиями образования газовой и жидкой углеводородной смеси из органического вещества осадочных нефтегазоматеринских пород, а также условиями миграции и накопления углеводородов в пористых плас­тах залежей. Значительное влияние на физико-химические свойства и фа­зовое состояние и поведение пластовых газов углеводородов фракции С2 — С4 обусловлено тем, что эти компоненты достаточно легко переходят из газового состояния в жидкое и обратно при изменении в пласте термоба­рических условий (табл. 1.22). Соответственно вовлекаются в межфазный массообмен другие компоненты смеси, в первую очередь с относительно близкими к промежуточным углеводородам свойствами. По данным работ [31, 45] существует прямая связь между содержанием в пластовой газовой смеси фракции С2 —С4 и выходом стабильного конденсата (С5+) на первом этапе разработки некоторых ГКМ основных газодобывающих регионов стран СНГ.

Таблица 1.22

Некоторые физико-химические свойства низкомолекулярных алканов

Алканы

Показатели

метан

этан

пропан

изобутан

нормаль­ный

нормаль­ный

бутан

пентан

Химическая формула Молекулярная масса

16,04

30,07

С3Н, 44,09

CQ 4Г) JO,l£i

л-С4Н,„ 58,12

«-С5Н, 72,15

Температура кипения при

-161,3

-88,6

-42,2

-10,1

-0,5

+ 36,2

давлении 0, 1 МПа, °С

Критические параметры:

температура, К

190,8

305,3

369,9

408,1

425,2

469,7

давление, МПа

4,63

4,87

4,25

3,65

3,80

3,37

плотность, кг/м3

163,5

204,5

218,5

221,0

226,1

227,8

Теплота испарения при

570

490

427

352

394

341

давлении 0,1 МПа, кДж/кг

Результаты статистического анализа данных разработки ГКМ России и некоторых других стран СНГ, а также экспериментальные данные изуче­ния поведения рекомбинированных проб пластовых газоконденсатных смесей с использованием сосудов PVT-соотношений позволили специалис­там ВНИИГАЗа в свое время предложить обобщенную зависимость сред­них потерь стабильного конденсата (С5+) в пласте от потенциального со­держания конденсата в газе начального состава. Однако этой зависимости не всегда соответствуют газоконденсатные смеси, в которых значительно содержание неуглеводородных компонентов и (или) фракции С2 —С4, или, напротив, содержание последней ниже "среднего". Во ВНИИГАЗе автором с сотрудниками исследована зависимость растворимости углеводородов С5+ в газе от содержания в смеси фракций С2 —С4. Установлено, что давление начала конденсации смеси в большой степени зависит от содержания в смеси промежуточных углеводородов: чем их больше, тем при меньшем давлении начинается переход системы в двухфазное состояние. Таким об­разом, компоненты С2, С3, С4 способствуют смещению равновесия в газо-конденсатной смеси в сторону газовой фазы. Отсюда становится понятным механизм влияния промежуточных углеводородов на конденсатоотдачу пла­ста при прочих равных условиях.

В процессе экспериментальных и аналитических исследований по про­блеме повышения конденсатоотдачи пласта на завершающей стадии разра­ботки ГКМ ВНИИГАЗом были предложены методы воздействия на газо-конденсатный пласт путем нагнетания газообразных агентов, обогащенных промежуточными углеводородами [48, 49, 53, 45]. Сущность воздействия за­ключается в значительном смещении фазового равновесия в пластовой двухфазной системе в сторону жидкой фазы, что позволяет вовлечь в раз­работку запасы ретроградного углеводородного конденсата.

Дальнейшие исследования ВНИИГАЗа показали, что во многих случаях весьма технологичными являются методы воздействия на газоконденсатный пласт, основанные на принудительном смещении равновесия в сторону га­зовой фазы. Эти методы позволяют как повышать на 10 — 20 % продук­тивность добывающих скважин, так и извлекать не менее 10—15 % ретро­градного углеводородного конденсата, относимого при обычной разработ­ке месторождений на режиме истощения к неизвлекаемым потерям. Физи­ческое и математическое моделирование свидетельствовало о возможности (учитывая роль промежуточных углеводородов в массообменных процес­сах) установления оптимальной области пластовых давлений в ходе отбора запасов углеводородов на режиме истощения, когда следует осуществлять нагнетание газообразного агента для более эффективного извлечения рет­роградного конденсата путем его испарения.

В развитие изложенных идей и на базе накопленного опыта изучения роли промежуточных углеводородов в конденсатоотдаче пласта было осу­ществлено физическое моделирование процессов разработки ГКМ, пласто­вая смесь которых содержит разное количество этан-пропан-бутановой фракции. Все исследования можно разделить на два этапа. На первом из них были проведены два эксперимента по истощению гипотетической мо­дельной ГКС в сосуде PVT-соотношений. В первом опыте система, состав и основные параметры которой приведены в табл. 1.23, содержала проме­жуточные компоненты С3, С4. Во втором опыте данные углеводороды в ис­ходной ГКС отсутствовали, их долю в составе смеси восполнили метаном (табл. 3). Истощение ГКС как в первом, так и во втором случае прово­дилось от давления рпл = 25 МПа при температуре 80 °С, что вполне типично для среднестатистического состояния газоконденсатного объекта. Ограничение максимального темпа падения пластового давления в опытах обеспечивало равновесный межфазный массообмен.

Результаты экспериментов наглядно демонстрируют роль промежуточ­ных углеводородов в удерживании компонентов С5+ в газовой фазе на на­чальной стадии отбора пластовой ГКС .

Однако дальнейшее снижение давления приводит к тому, что уже при рш = 14 МПа происходит инверсия зависимостей. Более значительное на­копление ретроградных углеводородов С5+ в начале истощения во втором эксперименте обеспечило больший потенциал для их последующего пере­хода в газовую фазу при вступлении системы в область прямого испаре­ния, причем данное явление нашло свое проявление не только в количест­венном отношении, но и в качественном.

Следует иметь в виду возможное влияние ретроградного конденсата в жидкой фазе ГКС как на величину рмк, так и на интенсивность прямого перехода жидких компонентов в газовую фазу. Безусловную роль в рассма­триваемых явлениях играют также качественные характеристики фракции С5+, отличающейся намеренно упрощенным составом и невысокой молеку­лярной массой, и фракции промежуточных углеводородов, не имеющей в своем составе этана.

Рассматриваемые экспериментальные данные были соотнесены с ре­зультатами соответствующих термодинамических расчетов (рис. 1.36), поз­воливших дополнительно продемонстрировать роль пропан-бутановой фракции в межфазных массообменных процессах при истощении ГКС. Для расчетов было взято три варианта состава исходной ГКС (табл. ), первые два из которых полностью аналогичны уже приводившимся мо­дельным системам (см. табл. ).

Из рис. 1.36 видно, что потери конденсата на начальной стадии отбо­ра пластовой смеси при "недостаточном" содержании компонентов С3 —С4 в исходной ГКС возрастают пропорционально площади между кривыми, соответствующими '"менее благоприятным" и "более благоприятным" с точ­ки зрения присутствия С3 —С4 условиям эксперимента. Рассмотрение гра­фических зависимостей, построенных на основании аналитических расче­тов, позволило выявить более четкую, по сравнению с экспериментальными данными, зависимость рнк фракции С5+от величины пластового давле­ния. Следует отметить достаточно хорошее совпадение экспериментальных результатов с расчетными данными.

Таким образом, исследования ВНИИГАЗа показали, что для повыше­ния конденсатоотдачи пласта при разработке газоконденсатных месторож­дений возможно использование сайклинг-процесса не только в его "класси­ческих" вариантах. Предложенные новые варианты частичного поддержа­ния пластового давления с учетом состава пластовой смеси предусматрива­ют нагнетание газа на той стадии истощения объекта, когда природное ко­личество этан-пропан-бутановой фракции в смеси обеспечивает повышен­ное содержание конденсата (фракции С5+) в равновесной газовой фазе. Ес­ли природного количества С2 —С4 недостаточно, возможно до нагнетания сухого газа создание в истощенном пласте оторочки из газа, обогащенного этими компонентами. По существу, речь идет об оптимизации частичного сайклинг-процесса. На такой способ разработки газоконденсатных место­рождений автором и группой специалистов получен патент [45].

 Поддержание давления путем нагнетания воды

Одним из возможных способов повышения эффективности разработки га­зоконденсатных месторождений могло бы быть заводнение продуктивных пластов по аналогии с нефтяными и газовыми залежами. Однако примени­тельно к газоконденсатным залежам этот способ воздействия далеко не универсален и требует специального рассмотрения с учетом особенностей конкретного продуктивного пласта.

Одной из наиболее важных геолого-промысловых характеристик зале­жи является глубина ее залегания. Для газоконденсатных и нефтегазоконденсатных залежей она варьирует от менее 1000 до 6000 м и более. При не­больших отступлениях обычно выдерживается прямая зависимость началь­ного пластового давления, начального содержания конденсата в газе и об­ратная зависимость пористости, а также проницаемости от глубины залегания продуктивных отложений. Серьезной проблемой является эксплуата­ция скважин на месторождении при наличии в их продукции значительно­го количества свободной жидкости (углеводородного конденсата, нефти, воды). Особенно усугубляется эта проблема при больших глубинах залега­ния объекта разработки, поскольку отечественные газоконденсатные и нефтегазоконденсатные месторождения эксплуатируются, за редким ис­ключением, на режиме использования только естественной энергии пласта и на определенной стадии отбора запасов углеводородов снизившееся за­бойное давление не обеспечивает вынос жидкости на поверхность, дебит скважины падает, и в конце концов скважина может остановиться.

Таким образом, поддержание пластового давления при разработке ме­сторождения является средством не только повышения углеводородоотдачи пласта, но и сохранения работоспособности добывающих скважин.

Примеры различных, достаточно широко применяемых за рубежом вариантов поддержания давления в залежи нагнетанием газа были рассмот­рены выше (в предыдущем разделе).

Закачка воды в продуктивные газоконденсатные и нефтегазоконден­сатные пласты также может в конкретных случаях явиться приемлемым способом повышения эффективности разработки объекта. Однако отме­ченные выше особенности глубокозалегающих продуктивных пластов и скважин обычно ограничивают возможности искусственного заводнения. Иногда препятствием для данного метода воздействия может явиться резкая неоднородность и трещиноватость пород, поскольку лабораторные экспе­рименты указывают на быстрые прорывы воды в этом случае к добываю­щей скважине. Тем не менее предложены варианты технологий разработки газоконденсатных и нефтегазоконденсатных месторождений, позволяющие достаточно успешно применять заводнение в условиях конкретных объек­тов.

Ниже излагаются результаты некоторых теоретических, эксперимен­тальных и промысловых исследований по проблеме повышения эффектив­ности разработки газоконденсатных и нефтегазоконденсатных залежей и поддержания работоспособности добывающих скважин путем воздействия на залежь нагнетанием воды или путем регулирования отборов пластовых флюидов.

В.Н. Мартос проанализировал результаты использования заводнения при разработке ряда отечественных и зарубежных нефтегазовых и нефте­газоконденсатных месторождений [10, 26]. В отличие от газоконденсатных месторождений, при этом важна последовательность отбора запасов угле­водородов, изначально представленных не только газовой фазой в пласто­вых условиях, но и жидкой. Если запасы жидких углеводородов (нефти) до­статочно велики, то иногда именно эти углеводороды представляют основ­ной объект эксплуатации.

В промышленных масштабах впервые в России на Бахметьевском ме­сторождении было применено барьерное заводнение в 60-е годы. Нефтега­зовая залежь Б1 тульского горизонта приурочена к брахиантиклинальной складке с пологим восточным (1,5 — 2°) и крутым западным (до 40°) крылья­ми. Продуктивный пласт залегает на глубинах 1000—1100 м. В разрезе на­считывается до шести слоев мелко- и среднезернистых, неравномерно кон­солидированных песчаников, различающихся переменной толщиной. Эти слои расчленены глинами и алевролитами. Наиболее выдержаны по площа­ди три верхних слоя, причем два из них изолированы от остальной толщи глинистым пропластком толщиной от 1 до 6 м. Соответственно в продук­тивном интервале выделяют верхнюю пачку Б}, включающую два первых песчаных слоя, и нижнюю Б,2, объединяющую остальные.

Начальное положение ВНК в обеих пачках было одинаковым, на аб­солютной отметке минус 913 м. ГНК занимал различное положение: в пач­ке Б| на отметке минус 875 м, в пачке Б,2 — минус 860 м. Этаж нефтенос­ности составлял соответственно 38 и 53 м, газоносности 69 и 50 м. Отно­шение объемов газовых и нефтяных зон равнялось 1,2 и 0,2, причем 80 % всех запасов нефти было сосредоточено в нижней пачке. Начальное плас­товое давление составляло 10,4 МПа.

Нефть нафтенометановой природы характеризовалась в пластовых ус­ловиях начальными вязкостью 4,5 мПа-с и плотностью 0,808 г/см3. Объем­ный пластовый фактор нефти был равен 1,11, газонасыщенность нефти — 60 м3/т. Давление насыщения было близко к начальному пластовому давле­нию.

Согласно первоначальному варианту, разработку залежи предполагали вести путем отбора только нефти при консервации газовой шапки, под­держивая давление нагнетанием воды за контур нефтеносности. На восточ­ном крыле структуры с основными запасами нефти пробурили три ряда эксплуатационных скважин, сосредоточив их преимущественно в пределах чисто нефтяной зоны пачки Б2. Чтобы избежать загазовывания нефтяной оторочки, скважины центрального ряда предполагалось эксплуатировать при забойных давлениях не ниже давления в газовой шапке.

В промышленную разработку залежь ввели в 1955 г., однако проект­ные показатели не были выдержаны: закачка воды не компенсировала от­боров нефти. К 1960 г. пластовое давление снизилось на 1 МПа, начали загазовываться скважины внутреннего ряда. Некоторые скважины с особен­но высокими газовыми факторами остановили и законсервировали. В этой ситуации специалисты института "ВолгоградНИПИнефть" предложили на­ряду с законтурным применить барьерное заводнение. Несмотря на нерав­номерность ряда «барьерных» скважин, задержки в освоении и в темпах нагнетания воды, закачка воды в зону нефтегазового контакта благоприят­но повлияла на динамику отборов нефти и нефтеотдачу. Согласно прогно­зу, конечная нефтеотдача должна была составить примерно 70 % от началь­ных запасов. В 1970 г. была введена в эксплуатацию газовая шапка, что стало возможным благодаря барьерному заводнению. Наблюдениями за скважинами внешнего и среднего рядов, которые испытывали влияние ба­рьерного заводнения, было установлено, что отсеченный водой газ переме­щается в глубь оторочки. По этой причине газовые факторы скважин вре­менно возрастали до нескольких тысяч м3/т. За газом двигался нефтяной вал. После его подхода к скважинам газовые факторы резко снижались, а дебиты скважин нередко превышали начальные величины. Геофизическими исследованиями был установлен характер растекания воды на подошве пласта. Возможно, на него повлияла не только гравитация, но и слоистая неоднородность нижней пачки. Было также установлено, что продвижение воды в газонасыщенную зону шло неравномерно: в нижней, более прони­цаемой пачке фронт воды продвигался быстрее, нежели в верхней пачке.

Опыт применения барьерного заводнения на Бахметьевском место­рождении весьма полезен, несмотря на ряд недостатков системы разработ­ки, поскольку продемонстрировал реальные возможности повышения углеводородоотдачи пластов.

Несомненный интерес представляет описанный В.Н. Мартосом опыт применения барьерного заводнения при разработке крупной нефтегазо-конденсатной залежи месторождения Адена (США, Колородо, округ Мор­ган). Моноклинально залегающий продуктивный пласт дакота мелового возраста представлен мелкозернистыми песчаниками со средней пористос­тью 19,7 % и проницаемостью 356-10"15 м2. Угол падения пласта около 0,5°, средняя глубина залегания минус 1725 м, средняя толщина 9 м. Размеры за­лежи в плане 5,5x11 км, площадь нефтеносности 3410 га, газоносности 1880 га.

Начальное пластовое давление составляло 10,7 МПа, температура 81,4 °С. Плотность нефти 0,8096 г/см3, вязкость при пластовых условиях 0,35 мПа-с. Газонасыщенность нефти при начальных пластовых условиях была равна 89 м33. Геологические запасы нефти оценены в 22,1 млн. м3.

Газоконденсатная зона залежи была открыта в мае 1953 г., неф­тяная — в ноябре 1953 г. К середине 1954 г. на месторождении имелось 170 нефтяных и 15 газовых скважин. По первоначальному плану залежь пред­полагалось разрабатывать на нефть с консервацией газовой шапки, причем давление поддерживать не предполагалось.

За первые 9 мес разработки нефтяной оторочки пластовое давление понизилось на 0,52 МПа. Нефтяные скважины вблизи ГНК вступали в ра­боту с повышенным газовым фактором и быстро загазовывались. Быстро возрастал газовый фактор и на скважинах, удаленных от начального ГНК. Анализ динамики показателей эксплуатации скважин свидетельствовал о том, что основные энергетические ресурсы пласта обусловлены сжатым газом газовой шапки и растворенным в нефти газом. Из-за пологого зале­гания пласта режим газовой шапки оказался малоэффективным, наблюда­лась тенденция к загазовыванию нефтяной оторочки вследствие локальных прорывов газа по высокопроницаемым пропласткам.

Лабораторные опыты на кернах, отобранных из продуктивного объ­екта, показали, что эффективное извлечение остаточных запасов нефти должно обеспечить заводнение. Было установлено также, что линейное за­воднение в данном случае целесообразнее площадного.

При составлении проекта вторичной разработки залежи рассматрива­ли два варианта. По первому из них предполагалось осуществить прикон-турное заводнение, по второму — барьерное. После тщательного изучения преимуществ и недостатков этих вариантов был выбран второй — барьер­ное заводнение.

Согласно принятому проекту в зоне контакта газ — нефть были про­бурены 24 нагнетательные скважины. Кроме того, под нагнетание переобо­рудовали восемь эксплуатационных скважин. Закачку воды начали 1 июля 1957 г. Темп нагнетания за 6 мес возрос с 6350 до 11 900 м3/сут. К ноябрю 1957 г. между нефтяной и газовой зонами был образован сплошной водя­ной барьер. Пластовое давление начало повышаться.

Первоначально общую нефтеотдачу после окончания заводнения оце­нивали в 55 %. Фактический ход разработки показал, однако, что отдель­ные участки в пределах нефтяной оторочки слабо реагировали на закачку воды. Было установлено также, что в подошве продуктивного интервала имеется малопроницаемый пропласток, не охваченный вытеснением. С учетом этих обстоятельств было подсчитано, что коэффициент нефтеотда-чи по различным участкам составит от 55 до 40 % при среднем значении 47 %.

Ход разработки и достигнутые результаты подтвердили рациональ­ность барьерного заводнения на месторождении Адена. По расчетам, экс­плуатацией залежи на истощение можно извлечь максимум 30 % геологиче­ских запасов нефти. Таким образом, дополнительный прирост нефтеотда-чи за счет закачки воды уже к середине 1965 г. составил 10 %, а общий прирост — 17 %. Однако выигрыш, полученный благодаря применению ба­рьерного заводнения, этим не исчерпывается. В период разработки залежи на истощение промысел испытывал значительные затруднения, связанные с загазовыванием скважин. Скважины приходилось останавливать из-за превышения предельно допустимых газовых факторов. Поддерживать нор­мированный темп извлечения нефти при достигнутой нефтеотдаче 12 % оказалось невозможным. Это означало, что срок разработки залежи рас­тянулся бы на долгие годы. Барьерное заводнение радикально изменило по­ложение дел на промысле. Указанные затруднения отпали вскоре после за­качки воды.

Наряду с интенсификацией добычи нефти представилась возможность ввести в эксплуатацию газоконденсатную зону, что повысило экономич­ность системы разработки. Ликвидация прорывов газа в нефтяную зону улучшила коэффициент его утилизации.

Несмотря на высокую оценку эффективности барьерного заводнения, полнота использования запасов нефти не удовлетворяет компанию "Юнион ойл", которая разрабатывает месторождение Адена. В связи с этим компа­ния обратилась к третичным методам добычи. Лабораторными опытами было установлено, что в местных условиях для извлечения остаточной неф­ти целесообразно использовать метод смешивающегося вытеснения, преду­сматривающий образование в пласте оторочки из пропана и продвижение ее путем попеременной закачки газа и воды. Поэтому в 1962—1965 гг. про­вели два промышленных эксперимента, результаты которых показали, что основные затруднения на пути промышленного внедрения метода смешива­ющегося вытеснения связаны с регулированием коэффициента охвата.

На фоне общего потока воды от начального ГНК в глубь оторочки за­качиваемый через одиночные скважины пропан продвигался в этом же на­правлении узкими языками. Временное прекращение барьерного заводне­ния в полосе одного из опытных участков привело к локальному вторже­нию в эту зону газа из газоконденсатной шапки. Зафиксированы также быстрые прорывы газа, закачиваемого вслед за пропаном, в наблюдатель­ные скважины. Коэффициент вытеснения в охваченных зонах по расчету близок к 1, но коэффициенты охвата примерно в 4 раза ниже прогноз­ных.

Накопленный в ходе промышленных экспериментов опыт позволяет специалистам в общем оптимистично оценивать возможности смешиваю­щегося вытеснения остаточной нефти. Предположительно на 1 м3 закачан­ного пропана можно добыть 2 м3 нефти. Соотношение затрат и прибылей в этом случае оказывается выгодным. Поэтому можно было ожидать, что после окончания заводнения приступят к третичной разработке месторож­дения Адена.

Прогрессивная технология барьерного заводнения с использованием загустителя воды была испытана на нефтегазовом месторождении Норт Ист Холсвил (США).

Залежь Крейн месторождения расположена в округе Харисон (штат Техас) и приурочена к оолитовым известнякам, залегающим на глубине 2100 м. Она была открыта в 1950 г. и считалась газовой, пока в 1956 г. не была обнаружена нефтяная оторочка.

Продуктивный интервал представлен двумя тонкими пропластками с окнами слияния в пределах нефтяной оторочки. Средняя эффективная мощность равна 2,4 м, пористость коллекторов — 17 %, проницаемость 50-10-15 м2. В структурном отношении залежь представляет собой пологую моноклиналь вытянутой формы. Площадь продуктивности оценивается в 6,9 тыс. га, из них 2,8 тыс. га занимает оторочка. Начальные запасы нефти составляли 2,7 млн. м3. Нефть легкая, летучая.

Добыча газа до обнаружения нефтяной оторочки вызвала смещение ее вверх по структуре. Четкого контакта газ —нефть к 1956 г. уже не было, а образовалась широкая переходная зона в интервале отметок от —1920 до —1950 м.

Оторочку быстро разбурили и ввели в эксплуатацию. Нефть, однако, продолжала мигрировать в газовую шапку. Пластовое давление снижалось быстрее, чем это могло быть вызвано отбором нефти. Наряду со смещени­ем оторочки наблюдались локальные прорывы в нее газа. Большинство скважин работало с ГФ более 3500 м33, и поэтому дебиты их были резко ограничены.

В такой ситуации единственным реальным методом, способным оста­новить миграцию нефти, было признано барьерное заводнение. Проведен­ные расчеты показали, однако, что водяной барьер окажется недостаточно эффективным. Закачиваемая вода в сложившихся условиях будет вторгать­ся в основном в газовую зону и полностью остановить нефть не сможет. Возникла идея загустить воду с помощью водорастворимого полимера. В результате лабораторных и промысловых экспериментов сделан вывод о том, что для создания эффективного барьера между нефтяной и газовой зонами в закачиваемую воду достаточно ввести 0,025 % частично гидролизованного полиакриламида типа пушер.

Под закачку воды перевели две газовые скважины, которые вместе с двумя дополнительно пробуренными создали довольно плотный "барьер­ный" ряд, примерно отвечавший текущему положению ГНК. В мае 1963 г. через скв. 37-2 и 35-1 начали закачивать воду с расходом 480 м3/сут. В ноябре в воду стали вводить полимер, поддерживая его концентрацию на уровне 0,025 %. Из промежуточных скв. 36-1 и 37-3 в начальный период заводнения отбирали жидкость и газ для ускоренного образования барье­ра.

В январе 1965 г., после того как было закачано 67 т пушера, перешли к нагнетанию пресной воды. В октябре 1967 г. под закачку переоборудова­ли скв. 36-1 и 37-3. К этому времени выяснилось, что дебиты эксплуатаци­онных нефтяных скважин, расположенных по соседству с барьером, за­метно выросли, а газовый фактор снизился с нескольких тысяч до 60 м33. На фронте вытеснения, судя по этим изменениям, сформировался нефтяной вал. Последнее явилось неожиданностью, поскольку из-за высо­кой газонасыщенности коллектора на образование нефтяного вала здесь не рассчитывали.

Одновременно с барьерным начали осуществлять площадное заводне­ние центральной части оторочки. Для этого под нагнетание оборудовали шесть скважин, приемистость которых составляла в среднем 320 м3/сут. Через пять месяцев было зафиксировано влияние заводнения на работу скв. 25-1, 20-1, 10-1 и 11-1. Период безводной добычи был непродолжительным. Из-за неоднородности пласта прорывы воды происходили при низ­ких коэффициентах охвата.

Сопоставление показателей разработки центральной части нефтяной оторочки и полосы, прилегающей к барьеру, дало основание считать, что закачка полимера гасит гетерогенную неустойчивость вытеснения. В связи с этим было принято решение закачать в центральные нагнетательные скважины порции полимерного раствора повышенной концентрации, что­бы блокировать промытые водой зоны пласта. Эту операцию начали в ию­ле 1964 г. В течение 80 сут в скв. 12-1, 15-1, 44-1 и 66-1 закачивали 0,05 %-ный раствор пушера, затем перешли к нагнетанию воды. Спустя два меся­ца было зафиксировано значительное повышение дебитов и снижение об-водненности нефти по скв. 10-1 и 11-1. Остальные эксплуатационные сква­жины на закачку полимера реагировали слабо.

К ноябрю 1965 г. полимерное заводнение распространили на западную часть нефтяной оторочки. Здесь с самого начала закачивали 0,025 %-ный раствор пушера, причем общий его объем составил 8 % объема пор участ­ка. Показатели разработки этого участка оказались лучше, чем централь­ного. Это подтверждает известное положение, что при закачке полимера в локально обводненный пласт достигается меньший эффект. Закачивать по­лимер выгоднее с самого начала операции по поддержанию пластового дав­ления.

Период эксплуатации на истощение характеризуется быстрым сниже­нием пластового давления и дебитов нефти, ростом ГФ. Максимальный ме­сячный отбор (6,75 тыс. м3) наблюдался в марте 1959 г., а к 1963 г. добыча нефти снизилась до 0,95 тыс. м3/мес. С началом заводнения отмечена ста­билизация, а в дальнейшем — повышение пластового давления с 9,8 до 13,7 МПа. По мере расширения масштабов воздействия на залежь росли отборы нефти, которые к середине 1966 г. достигли 12,6 тыс. м3/мес. Средний газовый фактор упал с 2300 до 180 м33. На 01.01.1969 г. из зале­жи было добыто 650 тыс. м3 нефти, из них 450 тыс. м3 получено за счет полимерного заводнения.

При оценке эффективности полимерного заводнения продуктивную площадь разбили на семь участков, выделенных с учетом истории их раз­работки. Для каждой эксплуатационной скважины рассчитали предельный отбор нефти путем экстраполяции графиков дебитов, которые в настоя­щее время повсюду имеют тенденцию к постепенному снижению. Сумми­рованием оценили предельную нефтеотдачу по участкам и сопоставили по­следнюю с расходом полимера. При этом было установлено, что закачка пушера в количестве меньше 18,5 кг/(га-м) практически не повышает эф­фективность вытеснения нефти. Для участка № 5, расположенного в цент­ральной части оторочки, где расход полимера составил около 9 кг/(га-м), удельная нефтеотдача оценивается в 90 м3/(га-м), что близко по эффектив­ности к простому заводнению — 83 м3/(га-м).

Максимальный эффект — 211 м3/(га-м) — ожидается на участке № 2, где расход полимера составил 38,5 кг/(га-м). На соседнем с ним участке № 3 было закачано еще больше полимера — 42,5 кг/(га-м), но из-за того, что этой операции предшествовало простое заводнение, нефтеотдача здесь бу­дет ниже —128 м3/(га-м).

В среднем по залежи рассчитывают получить по 127 м3/(га-м) нефти, что в 2,5 раза превышает прогнозную нефтеотдачу, достигаемую при раз­работке оторочки на естественном пластовом режиме. Прирост нефтеотдачи за счет загущения воды полимером составит 36 мэ/(га-м). В расчете на 1 м3 добытой нефти затраты на полимер оцениваются в 2,07 долл. Несмот­ря на приближенность расчета экономических показателей, полимерное заводнение на данном месторождении оказалось выгодным.

Опыт разработки залежи Крейн показывает, насколько эффективным может быть оперативное изменение системы воздействия на нефтегазо-конденсатные пласты. Здесь была применена уникальная технология добы­чи нефти, но особенно важно то, что к ней пришли в результате система­тических наблюдений за состоянием оторочки при различных способах воздействия на пласт. Загущение воды полимером с целью создания устой­чивого барьера между нефтяной и газовой зонами само по себе является крупным достижением в области совершенствования барьерного заводне­ния. Это мероприятие, к тому же, позволило установить, что в местных условиях закачка полимера значительно улучшает коэффициент охвата. Распространение полимерного заводнения на всю нефтенасыщенную зону весьма благоприятно сказалось на нефтеотдаче. В то же время следует от­метить, что не удалось остановить движение оторочки регулированием де-битов путем форсированного отбора нефти.

Ю.В. Желтое, В.М. Рыжик, В.Н. Мартос предложили также способ разработки нефтегазоконденсатного месторождения путем частичного под­держания пластового давления в газовой шапке за счет барьерного завод­нения и регулируемых отборов нефти и газа. Согласно этому способу "су­хого поля" в течение определенного периода времени в зону ГНК нагнета­ется вода [10]. Одновременно осуществляется разработка нефтяной ото­рочки и газовой шапки. При этом темпы отбора нефти из оторочки и газа с конденсатом из газовой шапки устанавливаются такими, чтобы к концу выработки основных запасов нефти часть газоконденсатной зоны осталась необводненной. После прекращения закачки воды нефтяную оторочку продолжают разрабатывать на истощение до заданного предела обводнен-ности продукции. В это же время идет интенсивный отбор газа из зоны "сухого поля". Поскольку даже частичного поддержания давления после прекращения нагнетания воды не ведется, в результате отбора нефти и га­за пластовое давление достаточно быстро снижается, а газонасыщенный объем обводненной зоны увеличивается и соответственно происходит вне­дрение воды из этой зоны в "сухое поле". После достижения порога гидро­динамической подвижности защемленный газ обводненной зоны начинает фильтроваться не только в составе внедряющейся воды, но и как сплошная свободная фаза, обеспечивая увеличение дебитов газа эксплуатационных скважин. Авторы способа признают, что рассчитанные темпы добычи газа с конденсатом могут оказаться слишком низкими. В этом случае рекомен­дуется устанавливать отборы нефти и газа в соответствии с существующи­ми потребностями, но после обводнения заранее установленной части газо­конденсатной шапки "сухое поле" следует законсервировать. Размеры "су­хого поля" можно выбрать с таким расчетом, чтобы к моменту предельно­го снижения давления полного обводнения этого поля не произошло и имелась бы возможность в период доразработки залежи отбирать газ без воды. Экспериментальные исследования авторов способа показали, что в этом случае размеры "сухого поля" должны быть значительными.

Период доразработки будет сопровождаться снижением давления, в частности, в зоне "сухого поля". Соответственно будет уменьшаться конденсатосодержание добываемого газа. Отсюда следует, что для оптимизации не только доразработки, но и разработки в целом объекта необхо­димо сравнить ожидаемые показатели для нескольких вариантов, разли­чающихся объемами нагнетания воды и размерами "сухого поля" к мо­менту прекращения поддержания давления. Очевидно, эти расчеты долж­ны носить конкретный характер с учетом характеристики объекта разра­ботки.

Эксперименты показали, что доля воды в продукции оказывается до­пустимой после снижения насыщенности пласта на 10—15 %.Таким обра­зом, если после обводнения "сухого поля" средняя водонасыщенность плас­та снизится на подобную величину, обводнившиеся ранее скважины могут быть пущены в работу и будут фонтанировать газом с водой. По мере от­бора из пласта воды и снижения его водонасыщенности обводненность продукции будет непрерывно снижаться.

В некоторых случаях на нефтегазоконденсатных месторождениях мо­жет оказаться целесообразным применение законтурного заводнения. При рассмотрении этого способа обычно возникают опасения потерь нефти из-за вторжения ее в газонасыщенную зону, и для предотвращения этого принимают специальные меры. Законтурное заводнение служит прежде всего целям повышения нефтеотдачи и в случае мощных нефтяных оторо­чек может дать значительный технико-экономический эффект.

Как известно, в газоконденсатных шапках нефтегазоконденсатных за­лежей может присутствовать так называемая остаточная (погребенная) нефть, причем насыщенность ею перового пространства и ее запасы могут быть значительными [15, 28, 58]. Это обстоятельство заставляет изменить устоявшуюся точку зрения на недопустимость вторжения нефтяной ото­рочки в газоконденсатную зону. Результаты проведенного Ю.В. Желтовым и В.Н. Мартосом экспериментального исследования закономерностей дви­жения оторочек позволили предложить способ разработки нефтегазокон­денсатных залежей с преднамеренным принудительным смещением нефтя­ных оторочек в купол залежи. Смысл предложенного способа состоит в том, что при достаточно высокой насыщенности пласта погребенной неф­тью (примерно 25 % и больше от объема пор) будет происходить накопле­ние нефти в оторочке. За счет добычи погребенной нефти общая нефтеот-дача может превысить начальные запасы оторочки. При менее высоких насыщенностях размеры оторочки по мере ее движения сокращаются, од­нако и в этом случае может быть получена сравнительно высокая нефтеот-дача. Единственным непременным условием применения этого способа яв­ляется поддержание в залежи начального давления.

Размещение эксплуатационных скважин при применении способа принудительного смещения нефтяной оторочки должно производиться с учетом физико-геологических особенностей залежи. Во-первых, нужно иметь в виду то обстоятельство, что при высокой насыщенности пласта погребенной нефтью нефтеотдача будет возрастать с увеличением пути пе­ремещения оторочки, а при низкой — снижаться. Во-вторых, нужно учи­тывать, что газ вытесняется углеводородными жидкостями значительно бо­лее полно, чем водой. Этот факт установлен рядом исследователей и под­тверждается нашими экспериментами. Это означает, что при принудитель­ном смещении оторочек в период поддержания давления может быть полу­чена более высокая газоотдача и конденсатоотдача, чем при барьерном за­воднении. Естественно, что полнота извлечения конденсата должна возрас­тать с увеличением пути перемещения оторочки. На основании таких характеристик залежи, как насыщенность пласта погребенной нефтью, потенциальное содержание конденсата в газе, запасы газа, конденсата и нефти, размеры газоконденсатной и нефтяной зон, ве­личина ретроградных потерь конденсата при снижении давления и т. д., в каждом отдельном случае можно определить оптимальный масштаб смеще­ния оторочки с целью максимального использования общих запасов зале­жи. В соответствии с этим и должно производиться размещение эксплуата­ционных скважин по залежи, устанавливаться темпы закачки воды и отбо­ров нефти.

Частичное смещение оторочки в газоконденсатную шапку может ока­заться целесообразным и в случаях узких оторочек. Такие оторочки могут иметь большой этаж нефтеносности и сосредоточивать значительные запа­сы нефти. Обычно их разбуривание представляет значительные трудности. Следствием этого является неравномерность дренирования нефтяной зоны, что приводит к дополнительным потерям нефти в пласте. Регулируемое смещение оторочек устраняет необходимость точной проводки скважин: они могут быть пробурены вблизи газонефтяного контакта и вводятся в эксплуатацию по мере прорыва в них нефти.

Сравнивая преимущества и недостатки способов барьерного заводне­ния и принудительного смещения оторочек, Ю.В. Желтов, В.М. Рыжик, В.Н. Мартос отмечают следующее. Первый из них характеризуется воз­можностью маневрирования очередностью и интенсивностью извлечения запасов нефти и газа с конденсатом, обеспечивает высокие конечные ре­зультаты разработки залежей и может быть рекомендован к широкому применению. Область применения способа принудительного смещения ото­рочек ограничена, но в определенных условиях он может обеспечить наи­более полное использование запасов в сравнении с прочими способами разработки, в том числе и в сравнении с барьерным заводнением. Наибо­лее важными условиями, определяющими целесообразность его примене­ния, являются величина насыщенности пласта погребенной нефтью, потен­циальное содержание конденсата в газе и соотношение запасов нефтяной и газоконденсатной зон залежи.

Заслуживают внимания комбинированные способы заводнения нефте-газоконденсатных залежей. В случае мощных нефтяных оторочек целесо­образно поддерживать давление закачкой воды на газонефтяной и водо-нефтяной контакты одновременно.

Двухстороннее заводнение нефтяных оторочек способствует более равномерному поддержанию давления по площади, и это благоприятно ска­зывается на нефтеотдаче. Иногда с этой целью прибегают еще и к площад­ному заводнению оторочки.

На наш взгляд, площадное заводнение может служить также способом доразработки нефтяных оторочек, которые при первичной эксплуатации были истощены неравномерно по площади. При применении систем «на истощение» давления такое положение часто имеет место из-за неконтро­лируемого вторжения нефти в газонасыщенную зону (с прорывами воды через оторочку) или из-за низкого коэффициента охвата при использова­нии режима газовой шапки. При этих способах в конечном счете целост­ность оторочек нарушается, и последние представляют собой отдельные невыработанные участки, разобщенные зонами локальных прорывов газа и воды.

Применяя, например, пятиточечные элементы площадного заводнения на этих участках, можно повысить нефтеотдачу и в какой-то мере компен­сировать ущерб, нанесенный запасам нефти при первичной разработке за­лежи «на истощение».

Закачка воды в нефтегазоконденсатный пласт может быть использова­на не только как средство поддержания давления, но и для регулирования равномерности перемещения газонефтяного контакта при разработке ото­рочек на режиме газовой шапки. Поэтому представляется целесообразным в загазованные нефтяные скважины закачивать (возможно, периодически) порции воды. Искусственное снижение фазовой проницаемости для газа в зонах локальных прорывов его в оторочку замедляет развитие языков газа, благодаря чему улучшаются коэффициенты охвата по площади и разрезу.

Следует иметь в виду, что применение способов поддержания давления закачкой воды предопределяет необходимость проведения детальных ис­следований термодинамических и фильтрационных процессов в нефтегазо-конденсатных системах в пластовых условиях. При выборе способа и со­ставлении проекта разработки залежи нужно иметь количественные сведе­ния об изменении свойств жидкостей и газа в зависимости от давления (вязкость, плотность, объемный коэффициент, растворимость и т.д.), о фазовых проницаемостях в тройных системах: газ — конденсат — вода, газ — нефть — вода, о влиянии условий вытеснения на полноту отбора из пласта нефти и газа с конденсатом и т.д.

При применении способов заводнения на нефтегазоконденсатных за­лежах особо важное значение приобретает контроль за состоянием плас­товых жидкостей и движением границ оторочек. Систематический кон­троль позволит вовремя предупреждать развитие нежелательных процессов в пласте, выяснять и оперативно устранять недостатки принятой системы. Именно это в конечном счете определяет эффективность разработки мес­торождения.

Р.И. Медведский, А.Б. Кряквин, В.П. Балин, Ю.Ф. Юшков [44] при анализе перспектив разработки газоконденсатонефтяных месторождений Западной Сибири считали наиболее приемлемым методом поддержания пластового давления заводнение (законтурное, площадное, барьерное и их комбинации). Рассмотрев все существующие и предложенные варианты за­воднения, эти авторы подчеркивают, что возможность применения того или иного варианта определяется конкретным геологическим строением и коллекторскими свойствами пласта, особенностями начального состояния пластовой системы. Отсюда они сделали вывод, что для нефтегазоконден­сатных месторождений Западной Сибири ни один из способов заводнения в чистом виде не может быть рекомендован и требуется изыскивать новые модификации заводнения, позволяющие рационально эксплуатировать об­ширные подгазовые зоны небольшой толщины. Было сделано предположе­ние, что наиболее эффективным подходом с точки зрения повышения нефтеотдачи и интенсификации нефтедобычи может явиться комбинация нескольких методов воздействия, в первую очередь сочетание физико-хи­мических методов блокирования газа с направленным гидроразрывом плас­та и заводнением.

С.Н. Закиров и P.M. Кондрат [13] полагают, что активное воздействие на процесс разработки месторождений природных газов при водонапор­ном режиме должно обеспечить регулирование продвижения пластовых вод, снижение размеров заводненной зоны пласта и количества защемлен­ного в ней газа. Оно достигается эксплуатацией обводненных газовых скважин. Для реализации технологии активного воздействия на водонапор­ный режим необходимо создать сетку добывающих и контрольно-наблю­дательных скважин, охватывающую всю площадь газоносности. Первона­чально из скважин отбирают газ. По мере появления воды в добываемой продукции применяют методы интенсификации выноса жидкости на по­верхность. При этом обязательным условием успешного внедрения техно­логии является сохранение режимов эксплуатации скважин, поддерживав­шихся до начала их обводнения, а при необходимости перевод скважин на форсированный режим отбора газа и воды. Вокруг забоя каждой обвод­ненной скважины по мере отбора воды и газа образуется зона понижен­ного давления. Согласно результатам проведенных С.Н. Закировым и P.M. Кондратом лабораторных экспериментов, при снижении давления в обводненных объемах пласта защемленный газ сначала расширяется, оста­ваясь практически неподвижным. После снижения давления на 23 — 37 % по отношению к давлению заводнения весь объем газа, получаемый при его расширении, становится подвижным. Защемление газа в пористой среде, последующее его расширение и движение приводят к существенному сни­жению фазовой проницаемости для воды — в 10—100 раз и более. В ре­зультате эксплуатации обводненных скважин замедляется продвижение пластовых вод в зоне их расположения, что способствует выравниванию контура газоносности. Одновременно с выполнением задач регулирования в разработку вовлекается газ из зон пласта, обойденных и отсеченных фронтом воды, и из заводненной зоны извлекается часть защемленного га­за как за счет отбора его вместе с водой, так и за счет поступления в газо­насыщенную часть пласта. Таким образом, в предложенном методе актив­ного воздействия на процесс разработки газовых месторождений отрица­тельные последствия проявления водонапорного режима — защемление га­за водой — используются для регулирования продвижения пластовых вод и повышения коэффициента газоотдачи. Применительно к месторождениям, разработка которых закончена при полном обводнении всех скважин, или к месторождениям, вступившим в завершающую стадию эксплуатации, тех­нология активного воздействия на водонапорный режим реализуется путем организации вторичной добычи газа из обводненных пластов. Исходя из результатов лабораторных экспериментов, для получения положительного эффекта давление в обводненных пластах необходимо снизить ниже значе­ния, соответствующего максимуму газожидкостного фактора (примерно 0,25 — 0,30 от давления заводнения).

Теоретические исследования технологии активного воздействия на во­донапорный режим проведены на примере Битковского газоконденсатного месторождения [19]. За период разработки из месторождения извлечено 71,2 % газа, в обводненной зоне защемлено 17,3 % от начальных и 57 % от остаточных запасов газа. Расчетные данные показывают, что в период доразработки месторождения (без регулирования продвижения пластовых вод) коэффициент газоотдачи по остаточному газу составит всего 21,18 %, а при совместном отборе из скважин газа с водой в зависимости от вари­анта их эксплуатации он будет изменяться от 47,8 до 58,9 % [20].

Заводнение является одним из возможных направлений повышения углеводородоотдачи и при разработке газоконденсатных месторождений. Те­оретические и экспериментальные исследования показывают, что в области изменения давления заводнения от начального до давления начала конденса­ции углеводородной смеси коэффициент конденсатоотдачи постепенно увеличивается по мере снижения давления, достигая максимального значения при давлении начала конденсации. Ретроградная конденсация углеводород­ной смеси сопровождается уменьшением коэффициента конденсатоотдачи, что связано с защемлением водой всего выпадающего в пористой среде конденсата. После достижения определенного (критического) значения на­сыщенности пор пласта выпавшим конденсатом, которое в экспериментах С.Н. Закирова и P.M. Кондрата на моделях несцементированных пористых сред равно 0,025 — 0,06, часть его начинает вытесняться водой из пористой среды с образованием впереди фронта воды оторочки. Это приводит к за­медлению темпа снижения коэффициента конденсатоотдачи, который, до­стигнув минимального значения, увеличивается. Результаты проведенных исследований показывают, что наиболее рациональным является заводне­ние при давлениях, близких к давлению начала конденсации углеводород­ной смеси, а также при пониженных пластовых давлениях в условиях на­личия в пористой среде выпавшего конденсата. Согласно эксперименталь­ным данным, закачка перед фронтом воды оторочки углеводородного рас­творителя, водогазовых смесей, раствора ПАВ и последовательное нагнета­ние водного раствора ПАВ и газа способствуют повышению коэффициента извлечения конденсата по сравнению с закачкой только воды. Высокие значения коэффициента конденсатоотдачи могут быть достигнуты при за­воднении в условиях конденсации в пласте тяжелых фракций углеводород­ного конденсата и частичной гидрофобизации ими поверхности поровых каналов, а также при давлениях, соответствующих минимальным значени­ям плотности и вязкости выпавшего в пласте конденсата. Эффективность заводнения газоконденсатных пластов подтверждена теоретическими иссле­дованиями, проведенными для условий горизонта В-16 Гадячского газокон-денсатного месторождения.

Предложенная технология активного воздействия на процесс разра­ботки газоконденсатных месторождений с нефтяными оторочками включа­ет отбор газоконденсатной смеси через добывающие скважины, располо­женные в своде структуры, обратную закачку в пласт всего конденсата че­рез нагнетательные скважины, расположенные на границе раздела газовой и нефтяной зон, и обратную закачку сухого газа через другую сетку нагне­тательных скважин, расположенных выше по напластованию. После созда­ния оторочки конденсата требуемого размера (примерно 20 — 25 % от объе­ма нефтенасыщенных пор) переходят на закачку воды через первую сетку нагнетательных скважин. Отбор нефти производят после образования в пласте оторочки конденсата, а в случае большой разности между началь­ным пластовым давлением и давлением насыщения нефти газом — с мо­мента ввода месторождения в разработку.

Применительно к разработке газоконденсатных месторождений с ос­таточной нефтью предложенная технология повышения коэффициента углеводородоотдачи предусматривает первоначальное извлечение газоконден­сатной смеси в режиме истощения до момента снижения пластового давле­ния до значения, соответствующего максимальной насыщенности пористой среды остаточной нефтью и выпавшим конденсатом. Затем в пласт закачи­вают вытесняющий агент (газ, воду), поддерживая давление постоянным. В рассмотренном случае для повышения эффективности извлечения остаточ­ной нефти используется отрицательное последствие разработки газокон­денсатных месторождений на режиме истощения — выпадение в пласте уг­леводородного конденсата. скважин. Для реализации технологии активного воздействия на водонапор­ный режим необходимо создать сетку добывающих и контрольно-наблю­дательных скважин, охватывающую всю площадь газоносности. Первона­чально из скважин отбирают газ. По мере появления воды в добываемой продукции применяют методы интенсификации выноса жидкости на по­верхность. При этом обязательным условием успешного внедрения техно­логии является сохранение режимов эксплуатации скважин, поддерживав­шихся до начала их обводнения, а при необходимости перевод скважин на форсированный режим отбора газа и воды. Вокруг забоя каждой обвод­ненной скважины по мере отбора воды и газа образуется зона понижен­ного давления. Согласно результатам проведенных С.Н. Закировым и P.M. Кондратом лабораторных экспериментов, при снижении давления в обводненных объемах пласта защемленный газ сначала расширяется, оста­ваясь практически неподвижным. После снижения давления на 23 — 37 % по отношению к давлению заводнения весь объем газа, получаемый при его расширении, становится подвижным. Защемление газа в пористой среде, последующее его расширение и движение приводят к существенному сни­жению фазовой проницаемости для воды — в 10 — 100 раз и более. В ре­зультате эксплуатации обводненных скважин замедляется продвижение пластовых вод в зоне их расположения, что способствует выравниванию контура газоносности. Одновременно с выполнением задач регулирования в разработку вовлекается газ из зон пласта, обойденных и отсеченных фронтом воды, и из заводненной зоны извлекается часть защемленного га­за как за счет отбора его вместе с водой, так и за счет поступления в газо­насыщенную часть пласта. Таким образом, в предложенном методе актив­ного воздействия на процесс разработки газовых месторождений отрица­тельные последствия проявления водонапорного режима — защемление га­за водой — используются для регулирования продвижения пластовых вод и повышения коэффициента газоотдачи. Применительно к месторождениям, разработка которых закончена при полном обводнении всех скважин, или к месторождениям, вступившим в завершающую стадию эксплуатации, тех­нология активного воздействия на водонапорный режим реализуется путем организации вторичной добычи газа из обводненных пластов. Исходя из результатов лабораторных экспериментов, для получения положительного эффекта давление в обводненных пластах необходимо снизить ниже значе­ния, соответствующего максимуму газожидкостного фактора (примерно 0,25 — 0,30 от давления заводнения).

Теоретические исследования технологии активного воздействия на во­донапорный режим проведены на примере Битковского газоконденсатного месторождения [19]. За период разработки из месторождения извлечено 71,2 % газа, в обводненной зоне защемлено 17,3 % от начальных и 57 % от остаточных запасов газа. Расчетные данные показывают, что в период до-разработки месторождения (без регулирования продвижения пластовых вод) коэффициент газоотдачи по остаточному газу составит всего 21,18 %, а при совместном отборе из скважин газа с водой в зависимости от вари­анта их эксплуатации он будет изменяться от 47,8 до 58,9 % [20].

Заводнение является одним из возможных направлений повышения утлеводородоотдачи и при разработке газоконденсатных месторождений. Те­оретические и экспериментальные исследования показывают, что в области изменения давления заводнения от начального до давления начала конденса­ции углеводородной смеси коэффициент конденсатоотдачи постепенно уве- личивается по мере снижения давления, достигая максимального значения при давлении начала конденсации. Ретроградная конденсация углеводород­ной смеси сопровождается уменьшением коэффициента конденсатоотдачи, что связано с защемлением водой всего выпадающего в пористой среде конденсата. После достижения определенного (критического) значения на­сыщенности пор пласта выпавшим конденсатом, которое в экспериментах С.Н. Закирова и P.M. Кондрата на моделях несцементированных пористых сред равно 0,025 — 0,06, часть его начинает вытесняться водой из пористой среды с образованием впереди фронта воды оторочки. Это приводит к за­медлению темпа снижения коэффициента конденсатоотдачи, который, до­стигнув минимального значения, увеличивается. Результаты проведенных исследований показывают, что наиболее рациональным является заводне­ние при давлениях, близких к давлению начала конденсации углеводород­ной смеси, а также при пониженных пластовых давлениях в условиях на­личия в пористой среде выпавшего конденсата. Согласно эксперименталь­ным данным, закачка перед фронтом воды оторочки углеводородного рас­творителя, водогазовых смесей, раствора ПАВ и последовательное нагнета­ние водного раствора ПАВ и газа способствуют повышению коэффициента извлечения конденсата по сравнению с закачкой только воды. Высокие значения коэффициента конденсатоотдачи могут быть достигнуты при за­воднении в условиях конденсации в пласте тяжелых фракций углеводород­ного конденсата и частичной гидрофобизации ими поверхности поровых каналов, а также при давлениях, соответствующих минимальным значени­ям плотности и вязкости выпавшего в пласте конденсата. Эффективность заводнения газоконденсатных пластов подтверждена теоретическими иссле­дованиями, проведенными для условий горизонта В-16 Гадячского газокон-денсатного месторождения.

Предложенная технология активного воздействия на процесс разра­ботки газоконденсатных месторождений с нефтяными оторочками включа­ет отбор газоконденсатной смеси через добывающие скважины, располо­женные в своде структуры, обратную закачку в пласт всего конденсата че­рез нагнетательные скважины, расположенные на границе раздела газовой и нефтяной зон, и обратную закачку сухого газа через другую сетку нагне­тательных скважин, расположенных выше по напластованию. После созда­ния оторочки конденсата требуемого размера (примерно 20 — 25 % от объе­ма нефтенасыщенных пор) переходят на закачку воды через первую сетку нагнетательных скважин. Отбор нефти производят после образования в пласте оторочки конденсата, а в случае большой разности между началь­ным пластовым давлением и давлением насыщения нефти газом — с мо­мента ввода месторождения в разработку.

Применительно к разработке газоконденсатных месторождений с ос­таточной нефтью предложенная технология повышения коэффициента углеводородоотдачи предусматривает первоначальное извлечение газоконден­сатной смеси в режиме истощения до момента снижения пластового давле­ния до значения, соответствующего максимальной насыщенности пористой среды остаточной нефтью и выпавшим конденсатом. Затем в пласт закачи­вают вытесняющий агент (газ, воду), поддерживая давление постоянным. В рассмотренном случае для повышения эффективности извлечения остаточ­ной нефти используется отрицательное последствие разработки газокон­денсатных месторождений на режиме истощения — выпадение в пласте уг­леводородного конденсата.

Р.М. Кондратом [19] достаточно подробно описаны особенности раз­работки Битковского и Гадячского газоконденсатных месторождений (Ук­раина) с применением заводнения.

Газоносные пласты Битковского газоконденсатного месторождения (Украина) приурочены к отложениям ямненской, манявской и выгодско-пасечнянской свит складки "Глубинная", залегающим на глубинах 1900 — 2800 м. Выше по разрезу в менилитовых отложениях этой же складки со­держится нефть. Продуктивные отложения представлены чередованием пе­счаников, известняков, глинистых сланцев, алевролитов, аргиллитов и гравелитов. В каждой из свит насчитывается от 2 до 20 песчаных пропластков толщиной от 1 до 22 м. Газоносные пласты характеризуются низкими коллекторскими свойствами (пористость составляет в среднем 0,12, проницае­мость по промысловым данным (2*15)-10"14 м2) и высокой неоднороднос­тью. Среднее значение коэффициента начальной газонасыщенности равно 0,7. В уплотненных песчано-алевролитовых породах развиты трещины. Трещинная пористость невелика, составляет 0,002 — 0,04 , но играет решаю­щую роль в проницаемости коллекторов.

Месторождение пластово-массивного типа с размерами 2500—6000 м по короткой и 18000 м по длинной осям складки. Поперечными нарушени­ями оно разбито на шесть блоков (с севера на юг): Старунский (I), Бачен-ский (II), Битковский (III), Пасечнянский (IV), Любижнянский (V) и Юго-За­падный (VI). Экранирующим является только нарушение, отделяющее Ста­рунский блок. Начальный газоводяной контакт был единым для всех бло­ков на абсолютной отметке минус 1945 м. Начальное пластовое давление, приведенное к плоскости начального контура газоносности, составляло 30,35 МПа, начальные запасы газа— 45-109 м3, начальное содержание кон­денсата в газе — 62 г/м3.

Месторождение приурочено к замкнутому водоносному бассейну, представленному в пределах отдельных блоков изолированными гидродина­мическими системами. Пластовые воды относятся к хлоркальциевому типу, хлоридной группе, натриевой подгруппе. Минерализация воды изменяется от 120 до 220 кг/м3, составляя в среднем 168 кг/м3.

Месторождение введено в разработку в 1962 г. Максимальный уровень добычи газа достигнут в 1968 г. и составил 7,88 % от начальных запасов газа, утвержденных в ГКЗ. В 1989 г. добыто 0,82 % газа от начальных запа­сов. На 01.01.90 г. из месторождения извлечено с потерями 79,7 % газа и 44,5 % конденсата. Суммарный отбор пластовой воды равен 165 598 м3. Среднее пластовое давление составляет 5,5 МПа. По площади газоносности оно распределено неравномерно и изменяется от 4,8 МПа в Битковском блоке до 8,9 МПа в Юго-Западном блоке.

Месторождение разрабатывается при водонапорном режиме. В конце 1967 г. начали обводняться приконтурные скважины 400 и 450. На 01.01.90 г. из 61 скважины, пробуренной в пределах начального контура газоноснос­ти, 6 ликвидированы по геологическим и техническим причинам, 17 — вследствие обводнения, 7 обводненных скважин переведены в контрольные. В фонде добывающих числятся 32 скважины. По данным за декабрь 1989 г., пять скважин (24, 28, 45, 385, 478) эксплуатируются • газлифтным способом (периодически или непрерывно) с дебитом газа 5 — 95 тыс. м3/сут, восемь (9, 25, 26, 435, 457, 464, 473, 476) эксплуатируются периодически или ра­ботают барботажным газом с дебитом 1—5 тыс. м3/сут. По остальным скважинам дебиты газа изменяются от 18 до 77 тыс. м3/сут. Среднее рабочее давление по скважинам составляет 0,7 — 5,8 МПа, давление в затрубном пространстве 0,7 — 6,7 МПа, водный фактор 8-10~6 — 49-Ю"6 м33.

Результаты промыслово-геофизических и термогазодинамических ис­следований скважин показывают, что обводнение происходило за счет как общего подъема газоводяного контакта, так и опережающего перемещения фронта воды по отдельным, наиболее дренируемым и проницаемым пропласткам, расположенным в различных частях продуктивного разреза.

Анализ промысловых данных показывает, что по мере отбора газа и снижения пластового давления происходило постепенное увеличение ско­рости внедрения воды в западную часть Битковского блока. На конец 1969 г. она достигла максимального значения, равного 110 м/год. В дальней­шем темп поступления воды уменьшается, а зависимости Н = f(t) и w = = y(t) постепенно выполаживаются. Аналогичные зависимости получены и для других блоков. В целом порядок обводнения добывающих скважин определяется положением их на структуре. Так, для обеих частей Пасеч-нянского блока получена линейная зависимость между абсолютными от­метками кровли выгодско-пасечнянских и манявских отложений (расстоя­ние до начального контура газоносности) и временем появления воды в продукции скважин.

Результаты промыслово-геофизических исследований обводненных скважин свидетельствуют о высоком значении коэффициента текущей га­зонасыщенности, при котором происходит отключение продуктивных пла­стов. Пласты со значением газонасыщенности 0,49—0,52 практически не работают. В продуктивном разрезе большинства скважин на момент их от­ключения имелись пропластки с начальной газонасыщенностью. Так, со­гласно данным промыслово-геофизических исследований скв. 32, проведен­ных в декабре 1975 г. после прекращения ее работы вследствие обводне­ния, газонасыщенные пласты отмечены в верхней части выгодско-пасечнянской свиты и в средней части манявской свиты. При повторных иссле­дованиях скважины, проведенных в мае 1979 г. через три с половиной года после ее остановки, изменений в расположении газонасыщенных пластов не произошло. Обращает на себя внимание сравнительно высокое значе­ние коэффициента остаточной газонасыщенности обводненных пластов: порядка 0,61 для выгодско-пасечнянской свиты и 0,5—0,59 для манявской свиты. За период эксплуатации скважины пластовое давление в зоне ее расположения снизилось с 17 МПа при появлении воды в продукции до 9,3 МПа —на момент прекращения ее работы из-за обводнения и 8,22 МПа — по замерам в мае 1979 г. С использованием этих данных опре­делено значение коэффициента остаточной газонасыщенности продуктив­ных отложений на момент защемления газа водой. Для отложений выгод­ско-пасечнянской свиты коэффициент остаточной газонасыщенности ока­зался равным 0,31, для пластов манявской свиты — 0,254—0,3. Эти значе­ния совпадают с результатами лабораторных экспериментов по вытесне­нию газа водой из естественных образцов Битковского месторождения в условиях, близких к пластовым; согласно им коэффициент остаточной га­зонасыщенности на момент прорыва воды составляет 0,3—0,35, а после прокачки одного порового объема воды уменьшается до 0,23—0,25.

В условиях Битковского месторождения контур газоносности переме­щается крайне неравномерно по площади газоносности и продуктивному разрезу. В связи с этим можно достоверно оценить только положение пе­редней кромки фронта вытеснения. На 01.07.83 г. из месторождения было отобрано 73,34 % начальных запасов газа, в том числе из взаимодействую­щих Бабченского, Битковского, Пасечнянского, Любижнянского и Юго-За­падного блоков —74,12 % начальных запасов газа в этих блоках. В резуль­тате анализа данных по обводнению месторождения получены следующие значения высоты подъема газоводяного контакта в отдельных блоках: Бабченский — 149 м, Битковский — 363 м в западной части и 316 в восточной части; Пасечнянский — от 200 (скв. 457) до 272,8 м (скв. 6) и 418,8 м (скв. 25) в западной части и от 78,7 (скв. 28) до 323,9 м (скв. 385) и 380,7 м (скв. 478) в восточной части; Любижнянский —155 м; Юго-Западный — 107 м в западной части и 47 м в восточной.

Расчеты, проведенные с использованием принятого положения газово­дяного контакта, показали, что на 01.07.1983 г. в Битковское месторожде­ние, за исключением Старунского блока, внедрилось 31,5-Ю6 м3 воды, что привело к обводнению (в пределах передней кромки фронта вытеснения) около 70 % порового объема пласта. Количество газа в заводненной зоне составляет 17,32 % от начальных и 66,92 % от остаточных запасов. Среднее значение коэффициента остаточной газонасыщенности равно 0,579. Оно выше критического значения, при котором для условий Битковского мес­торождения остаточный газ приобретает подвижность. Сравнительно вы­сокая газонасыщенность заводненной зоны объясняется как расширением остаточного газа по мере снижения пластового давления, так и наличием в заводненной зоне отдельных газонасыщенных участков, обойденных и от­сеченных фронтом воды.

Приведенные данные свидетельствуют о целесообразности проведения мероприятий по вовлечению в разработку остаточных запасов газа.

Для получения высоких значений коэффициента газоотдачи продук­тивных пластов при водонапорном режиме необходимо было обеспечить ус­тойчивую работу обводненных скважин. На Битковском месторождении применялись такие методы интенсификации выноса жидкости из газовых скважин, как снижение устьевых давлений путем подключения ряда сква­жин к конденсатопроводу (скв. 24, 26, 385, 478), общее снижение давления на приеме компрессорной станции, изменение конструкции лифта в от­дельных обводнившихся скважинах при проведении ремонтных работ и др.

Помимо рассмотренных выше вариантов разработки ГКМ с нагнета­нием воды в опубликованных в разное время работах предлагалась так на­зываемая водогазовая репрессия, целью которой является выравнивание фильтрационных сопротивлений в неоднородном пласте путем блокирова­ния наиболее проницаемых зон пласта и вовлечения в фильтрацию углево­дородов из ранее застойных зон. По-видимому, в условиях реального плас­та следует опасаться того, что блокироваться будет лишь ближайшая к на­гнетательной скважине часть наиболее проницаемых областей коллектора. Для достижения эффекта потребуется нагнетать значительные объемы во­ды и газа, соответственно следует быть готовыми к тому, что возникнет необходимость — после прорыва воды — эксплуатировать скважины с боль­шим содержанием в продукции воды, т.е. оборудовать скважины глубин­ными насосами (при глубинах залегания пласта приблизительно до 2500 м) или газлифтными подъемниками (при более значительных глубинах).

Обобщая все изложенное по проблеме разработки газоконденсатных и нефтегазоконденсатных месторождений с нагнетанием воды в пласт или с регулированием фронта ее распространения по пласту, можно сделать следующие выводы.

Искусственное заводнение пласта может быть применено в газоконденсатных залежах, в том числе с нефтяными оторочками, при глубинах приблизительно до 2500 м, и в коллекторах с проницаемостью не ниже 10~14 м2. Наиболее изученным и оправдавшим применение на реальных объектах является барьерное заводнение на газонефтяном контакте, а так­же в зоне нефтяной оторочки.

Как при разработке с искусственным заводнением, так и при регули­ровании продвижения фронта воды часть скважин на месторождении должна быть переведена на отбор воды или водогазовой смеси, в том чис­ле на форсированном режиме, что позволит управлять процессом продви­жения воды по пласту, обеспечить более полный его охват и снизить поте­ри углеводородов из-за защемления.

Увеличить конечную газоконденсатоотдачу пласта после его искусст­венного или естественного заводнения возможно, разрабатывая пласт на истощение путем отбора водогазовой смеси.

Очевидно, при разработке залежи с отбором больших объемов воды важно экологически грамотно утилизировать добываемую воду, например использовать ее для закачки в эксплуатируемые нефтяные или отработан­ные газовые пласты.


 

 


 


Информация о работе «Разработка месторождений газоконденсатного типа»
Раздел: Геология
Количество знаков с пробелами: 132098
Количество таблиц: 18
Количество изображений: 7

Похожие работы

Скачать
12286
0
6

... и тем самым делает процесс разработки месторождений более затратным. Одним из направлений снижения затрат является внедрение передовых компьютерных технологий в практику проектирования и управления разработкой нефтяных и газоконденсатных месторождений. Нефтяные компании все больше и больше стали применять геофизику и компьютерное моделирование, дающие более точные модели залежей и точно ...

Скачать
45377
1
7

... результаты разработки нефтегазовых и газоконденсатнонефтяных залежей приведены в [47-53]. 2. Моделирование процессов статического конусообразования при разработке нефтегазовых и газоконденсатнонефтяных залежей 2.1 Сущность проблемы конусообразования Большинство нефтяных, газоконденсатнонефтяных, нефтегазовых и газовых залежей, разрабатываемых в настоящее время, подстилаются частично или ...

Скачать
39827
3
4

... в 22 скважинах, нижняя – в 44 скважинах. Остальные эксплуатируют верхнюю и нижнюю части одновременно. В настоящее время на Ямсовейском газоконденсатном месторождении находятся в эксплуатации четыре газоконденсатных скважины, пробуренные на ачимовские отложения. Были проведены исследования физико-химических свойств газового конденсата и дана его оценка как углеводородного сырья для производства ...

Скачать
58486
2
0

... нефть и газ. Это потребовало объяснить происхождение нефти и газа, дало мощный толчок развитию геологии – науки о составе, строении и истории Земли, а также методов поиска и разведки нефтяных и газовых месторождений. Поисковые работы на нефть и газ осуществляются последовательно от регионального этапа к поисковому и далее – разведочному. Каждый этап подразделяется на две стадии, на которых ...

0 комментариев


Наверх