3. РАСЧЕТНАЯ ЧАСТЬ
3.1.Расчет ступени ЭЦН
3.1.1.Расчет рабочего колеса.
При расчете ступени погружного центробежного насоса всегда известны подача и напор насоса, скорость вращения вала и диаметр обсадной колонны скважины для работы в которой предназначен насос. (1)
Подача, Q – 30 м\сут.
Напор, H – 1300 м.
Частота вращения вала, n – 3000 об\мин.
Внутренний диаметр корпуса насоса, d – 82 мм.
Внутренний диаметр корпуса ступени, d – 76,5 мм.
После того, как установлен внутренний диаметр ступени, можно приступать непосредственно к расчету проточной части рабочего колеса и других размеров.
Для этого необходимо выполнить следующее:
а) Определить наибольший внешний диаметр рабочего колеса D max
D2max=Dвн.–25, (3.1.)
где, S – радиальный зазор между внутренней стеной корпуса ступени
D вн. и наибольшим диаметром рабочего колеса D max.
Этот зазор выбираем в пределах S=2-3 мм
б) Определим приведенную подачу рассчитываемой ступени:
Qприв.=2800( 90 )3 Q, (3.2)
n D2max
где, 2800 – приведенная скорость вращения единичного насоса в об\мин.
90 – наибольший внешний диаметр рабочего колеса единичного
насоса в мм.
n – число оборотов вала, об\мин.
Q – рассчитываемая подача, л\с.
в) Определяем диаметр втулки при входе в рабочее колесо:
Dвт.=Кdвт*D2max, (3.3)
где, K d вт – коэффициент, соответствующий полученному значению
Q прив, 0,31.
После определения диаметра втулки необходимо проверить возможность размещения вала насоса.
При этом должно быть соблюдено условие:
D = d + 2 δ вт.,
где, D вт – диаметр втулки, мм;
D в – диаметр вала насоса, мм;
δвт. – толщина ступени втулки (для погружных центробежных насосов с диаметром корпуса 92-150, можно принять Sвт=2-4 мм);
г) Определяем наибольший диаметр входных кромок лопастей D1 max по уравнению:
D1max=D2max
KD1max (3.4)
где, КD1 max – коэффициент, определенный для Q прив, 2,3;
в) Определяем диаметр входа D в рабочее колесо:
D0=КD0*D1max, (3.5)
К – коэффициент диаметра входа в рабочее колесо для данного
Qприв, 0,96;
е) Определяем наименьший диаметр входных кромок лопастей рабочего колеса D2 min:
D2min=√D2вн.ст.–1*(D2max)2*Fприв
0,78590 (3.6)
где, Fприв – приведенная площадь без лопаточного кольца между стенкой
корпуса ступени Dвн.ст. и ободом верхнего диска рабочего колеса
D2 min. Находят для Q Fприв = 1600 мм.
ж) Определяем наименьший диаметр входных кромок лопастей D1min:
D1min= D2max
KD1min (3.7.)
где, KDmin – коэффициент определяемый для Qприв.
з) Определяем высоту канала b на выходе из рабочего колеса.
в=Кb2*D2max, (3.8)
где, Кb2 – коэффициент, определяемый для Q, 0,016;
и) Определяем высоту канала b1 на входе в рабочее колесо.
b1=Kb1*D2max, (3.9)
Кb1 – коэффициент, определяемый для Q, 0,036;
к) Напор ступени определяют по коэффициенту окружной скорости
Кv2окр., пользуясь уравнением:
Kv2окр.=V2окр.max (3.10)
60√2gH
где, V2окр. – окружная скорость на диаметре D2max рабочего колеса;
Кv2окр.= πD2ср.*n
60√2gH (3.11)
где, K v2окр. – коэффициент окружной скорости, Кv2окр. = 1,33;
D2ср. – внешний диаметр рабочего колеса, мм;
п – число оборотов вала, об/мин;
g – ускорение свободного падения, м/с;
л) Определяем коэффициент быстроходности ступени;
м) Определяем конструктивные углы β1 и β2 от быстроходности ступени.
Расчет колеса:
а) D2max=Dвн.ст. – 2S
В2max=76,5-2*2
D=72,5 мм;
б)Qприв = 2800 (90 )3 *Q;
n D2max
Qприв = 2800 ( 90 )3 * 0,347;
3000 72,5
Qприв=0,6196 л\с;
в) d вт.=Кdвт*D2max
dвт=0,31*72,5
dвт=22,475 мм;
dвт=dв + 2δвт.
dвт=17+2*2/5
dвт= 22 мм;
г)D1max= D2max
KD1max
D1max=72,5
2,3
D=31,52 мм;
д) D0=К0*D1max;
D0=0,96*31,52;
D0=30,26 мм;
е) D2min=√D2 вн.ст. - 1 (D2max)2 *Fприв.
0,785 90
D2min=√76,52 – 1 (72,5)2 *1600
0,785 90
D2min=67,3 мм;
ж) D1min= D2max
KD1min
D1min= 72,5
2,2
D1min=32,95 мм;
з) b2=Кb2 * D2max;
b2=0,016*72,5
b2=1,16 мм;
и) b1=Кb1*D2max
b1=0,036*7,25=2,61 мм;
к) Н=(πDср.* Н)2 * 1
60*КН2 2g
Н=(3,14*0,0725*3000) * 1
60*1,33 2*9,81
Н=3,73 м;
л) Hs=60;
м) β1=27;
β2=53;
... двух и более пластов одной скважиной. Такие конструкции по существу являются приспособлениями известных элементов стандартной установки погружного насоса для работы в скважине в сочетании с другим оборудованием (газлифт, ШСН, фонтан ПЦЭН и т. д.). 5. Специальные установки погружных центробежных насосов на кабель-канате. Стремление увеличить радиальные габариты ЭЦЭН и улучшить его технические ...
... 20-30%, поэтому повышение энергетических характеристик электропогружных установок является важным резервом снижения себестоимости добычи. Рассматривая задачу создания более эффективного привода для погружных насосов, следует отметить и необходимость создания привода погружных винтовых насосов на частоту вращения 250-500 об./мин., которая позволит существенно повысить ресурс УЭВН и довести его до ...
... повышения надежности эксплуатации погружного оборудования, получения информации обоснованых параметров скважины, снижения эксплуатационных затрат за счет исключения сложных аварий 5.4 Подбор оптимального режима скважин эксплуатируемых установками ЭЦН и ТМС на Хохряковском месторождении. 1) Перевод на другой вид эксплуатации. Для УЭЦН: 1) Изменением типоразмера УЭЦН. 2) Заглублением ...
... островное распространение, залегает в данном районе на глубине 100-130м. Мощность реликтовых мерзлых пород неоднородна и варьирует от 20 до 100м. 1.3. Условия водоснабжения Рославльское нефтяное месторождение расположено в пределах Средне-Обского гидрогеологического мегабассейна. Благоприятные природно-климатические условия, а именно: избыточное количество атмосферных осадков, заболоченность ...
0 комментариев