1.5 Гравитационные линзы и коричневые карлики

И наконец, сюжет, еще более свежий, чем пульсар PSR 1913+16. Он тесно связан, однако, с идеей, возникшей еще на заре ОТО. В 1919 году Эддингтон и Лодж независимо заметили, что, поскольку звезда отклоняет световые лучи, она может рассматриваться как своеобразная гравитационная линза. Такая линза смещает видимое изображение звезды-источника по отношению к ее истинному положению.


Первая наивная оценка может привести к выводу о полной безнадежности наблюдения эффекта. Из простых соображений размерности можно было бы заключить, что изображение окажется сдвинутым на угол порядка rg /d, где rg — гравитационный радиус линзы, а d — характерное расстояние в задаче. Даже если взять в качестве линзы скопление, состоящее из 104 звезд, а для расстояния принять оценку d~10 световых лет, то и тогда этот угол составил бы всего 10-10 радиан. Разрешение подобных углов практически невозможно.


Однако такая наивная оценка просто неверна. Это следует, в частности, из исследования простейшего случая соосного расположения источника S, линзы L и наблюдателя O (рис. 2). Задача эта была рассмотрена в 1924 году Хвольсоном (профессор Петербургского университета, автор пятитомного курса физики, широко известного в начале века) и спустя 12 лет Эйнштейном. Обратимся к ней и мы. Ясно, что для всякого расстояния d1 между источником и линзой, d — между линзой и наблюдателем для любого гравитационного радиуса rg линзы (звезды или скопления звезд) найдется такое минимальное расстояние ρ между лучом из источника и линзой, при котором этот луч попадает в приемник. При этом изображения источника заполняют окружность, которую наблюдатель видит под углом φ Углы φ и θ1  малы, так что φ=h/d,φ1=h/d а, кроме того, h=ρ Отсюда легко находим

С другой стороны, для θ справедлива, очевидно, формула (8). Таким образом,

И наконец, интересующий нас угол составляет


Таким образом, правильный порядок величины угловых размеров изображения не rg /d, а √rg/d (мы считаем здесь, что все расстояния по порядку величины одинаковы). Он оказался намного больше первой, наивной, оценки, и это радикально меняет ситуацию с возможностью наблюдения эффектов гравитационных линз.


Изображение источника в виде окружности (ее принято называть кольцом Эйнштейна), создаваемое гравитационной линзой при аксиально-симметричном расположении, реально наблюдалось. Сейчас известно

несколько источников в радиодиапазоне, которые выглядят именно так, кольцеобразно.

Если, однако, гравитационная линза не лежит на прямой, соединяющей источник с наблюдателем, картина оказывается иной. В случае сферически-симметричной линзы возникают два изображения (рис. 3), одно из которых лежит внутри кольца Эйнштейна, соответствующего осесимметричной картине, а другое — снаружи. Подобные изображения также наблюдались, они выглядят как двойные квазары, как квазары-близнецы.

Если источник движется, то перемещаются и оба изображения. Пока яркости обоих сравнимы с яркостью источника, для оценки углового расстояния между ними можно по-прежнему использовать выражение (10). Если масса звезды, действующей в качестве линзы, невелика, скажем на два — три порядка величины меньше массы Солнца, то разрешить такой угол между изображениями, ~0,001", практически немыслимо. Тем не менее обнаружить подобное явление можно. Дело в том, что при сближении изображений их суммарная яркость растет. Явление это, так называемое микролинзирование, имеет достаточно специфический характер: рост яркости и ее последующее падение происходят симметрично во времени, причем изменение яркости происходит одинаково на всех длинах волн (угол отклонения (10) не зависит от длины волны).

Поиски микролинзирования, которые велись на протяжении нескольких лет двумя группами астрономов, австралийско-американской и французской, не просто привели к обнаружению эффекта. Таким образом был открыт новый класс небесных тел: слабосветящиеся карликовые звезды, так называемые коричневые карлики, именно они играют роль микролинз. Все это произошло совсем недавно. Если еще в январе 1994 года было известно лишь два — три подобных события, то в настоящее время они уже исчисляются десятками. Поистине первоклассное открытие в астрономии.


2 Основные представления о специальной теории относительности

 

2.1 Эйнштейновский принцип относительности

Специальная теория относительности (СТО) наряду с предположением о том, что

a) пространство - трёхмерно, однородно и изотропно, (что означает, что в пространстве нет выделенных мест и направлений)

б) время - одномерно и однородно, (нет выделенных моментов времени)
использует следующие два основополагающие принципа:

1. Никакими физическими опытами внутри замкнутой физической системы нельзя определить, покоится ли эта система или движется равномерно и прямолинейно (относительно системы бесконечно удаленных тел). Этот принцип называют принципом относительности Галилея - Эйнштейна, а соответствующие системы отсчёта - инерциальными.

2. Существует предельная скорость (мировая константа c) распространения физических объектов и воздействий, которая одинакова во всех инерциальных системах отсчета. Со скоростью c распространяется свет в вакууме.

Прямая проверка независимости скорости света от скорости источника была выполнена А.М. Бонч-Бруевичем в 1956 г. с использованием света, испускаемого экваториальными краями солнечного диска. Скорости диаметрально противоположных участков диска (за счет вращения Солнца) отличаются на 3,5·103м/с, а скорость испущенного ими света изменялась на 65 240м/c. В пределах точности эксперимента, которая составляла [(v)/( v)]  7·10-2, зависимость скорости света от скорости источника не наблюдалось.

Таким образом, все физические явления, включая распространение света (и, следовательно, все законы природы), в различных инерциальных системах отсчета выглядят совершенно одинаково. Такая особенность Законов Природы носит название лоренцевой инвариантности (от латинского invariantis - неизменяющийся).

Согласно СТО, если скорость частицы меньше скорости света в вакууме c в некоторой инерциальной системе отсчета в данный момент времени, то она не может быть сделана равной или большей c ни кинематически - переходом в другую систему отсчета, ни динамически - изменением скорости частицы, приложенными к ней силами. Поэтому распространение электромагнитных волн в вакууме является самым быстрым способом распространения взаимодействия в физических системах.

Это положение принято распространять на все типы частиц и взаимодействий, хотя прямая проверка осуществлена только для электромагнитного взаимодействия.

Существование предельной скорости распространения взаимодействия приводит к ограничениям на модели в релятивистской физике. Оказывается, например, недопустимой модель абсолютно твердого тела, так как под воздействием приложенной к нему силы, все точки тела мгновенно изменяют свои механические состояния.

 


Информация о работе «Основные представления о специальной и общей теории относительности»
Раздел: Естествознание
Количество знаков с пробелами: 59336
Количество таблиц: 86
Количество изображений: 11

Похожие работы

Скачать
28374
0
6

... 11. П.Ф. Фильчаков. Справочник по высшей математике, М., Наука, с. 645. *** Сегодня, со всей ясностью становится очевидным, что открытый А.Эйнштейном процесс замедления Времени описанный в специальной и общей теориях относительности требует более глубокой проработки и осмысления. Необходимо разобраться и понять внутреннюю работу механизма замедления Времени, а не только знать причины вследствие, ...

Скачать
26645
0
4

... , которые господствовали в науке более двухсот лет. Все вышесказанное обосновывает актуальность выбранной темы. Цель данной работы всестороннее изучение и анализ создания специальной и общей теорий относительности Альбертом Эйнштейном. Работа состоит из введения, двух частей, заключения и списка использованной литературы. Общий объем работы 16 страниц. 1. Специальная теория относительности ...

Скачать
128002
1
0

... РВССОШ не сопровождается изменением его гамильтониана, а претендующие на роль гравитонов «ненаблюдаемые квазичастицы» не регистрируемы ни в каких физических экспериментах ни непосредственно, ни косвенно. Ввиду глобальной калибровочности эволюционного процесса, происходящего в микромире, все явления, непосредственно или косвенно связанные в СОФВ с наличием этих «ненаблюдаемых квазичастиц», (в том ...

Скачать
21715
0
0

... луч искривился. Для Эйнштейна это означало, что в реальном мире лучи света искривляются, когда проходят на достаточно малом расстоянии от массивного тела. Общая теория относительности Эйнштейна заменила ньютоновскую теорию гравитационного притяжения тел пространственно-временным математическим описанием того, как массивные тела влияют на характеристики пространства вокруг себя. Согласно этой ...

0 комментариев


Наверх