Расчёт МТЗ от перегрузки

Выбор схемы развития районной электрической сети
101980
знаков
40
таблиц
8
изображений

8.3.       Расчёт МТЗ от перегрузки.

Защита от перегрузки устанавливается на питающей стороне трансформатора.

Ток срабатывания защиты на НН:

(8.25)

(8.26)

Время действия защиты от перегрузки выбирается больше, чем время действия всех присоединений.

9.         БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА.

9.1.     Краткое описание проектируемого объекта.

В данном проекте проектируется трансформаторная подстанция 110/10кВ. На подстанции установлены масляные выключатели на стороне 110кВ наружной установки. Оборудование 10кВ находится в шкафах КРУН.

9.2.     Вредные и опасные факторы.

Электромагнитные поля.

В ОРУ и вблизи линий электропередачи, особенно 110 кВ и выше, токоведущими частями создается переменное электромагнитное поле. Оно характеризуется в основном напряженностью электрической составляющей поля Е, В/м, которая в РУ напряжением 10 кВ на высоте роста человека может достигнуть достаточно больших значений. Напряженность магнитной составляющей поля незначительна - 10-20 А/м, поэтому ее влиянием пренебрегают.

Электрическое поле неблагоприятно влияет на центральную нервную систему человека, вызывает учащенное сердцебиение, повышенное кровяное давление и температуру тела. Работоспособность человека падает. Он быстро утомляется. Воздействие на человека электрического поля зависит от его напряженности и длительности пребывания в зоне влияния.

Нормы для электрической напряженности (без применения защитных средств), согласно ГОСТ 12.1.00б-84[б] приведены в таблице 9.1.

Таблица 9.1

Допустимые времена пребывания в электромагнитном поле

Напряженность поля Е, кВ/м 5 10 15 20 25
Допустимое время пребывания в электрическом поле 1,5ч 10мин 5мин

В электроустановках 330 кВ и выше применяют сетчатые экраны, навешивают экранирующие козырьки и тросы, которые надежно заземляют. Козырьки устанавливают под шкафами аппаратуры управления, щитками и сборками. Навесы устанавливают над проходами и участками ОРУ, с которых осматривается оборудование. Также используют временные передвижные экраны.

Для защиты от воздействия электрического поля применяют защитные костюмы из металлизированной ткани, снабженные гибким проводом для заземления. Этот костюм полностью экранирует тело человека и исключает протекание по нему емкостного тока.

Шум и вибрация.

В результате гигиенических исследований установлено, что шум и вибрация ухудшают условия труда, оказывая вредное воздействие на организм человека. При длительном воздействии шума на организм человека происходят нежелательные явления: снижается острота зрения и слуха, повышается кровяное давление, снижается внимание. Сильный продолжительный шум может быть причиной функциональных изменений сердечно-сосудистой и нервной систем.

Вибрации также неблагоприятно воздействуют на организм человека, они могут быть причиной функциональных расстройств нервной и сердечно сосудистой систем, а также опорпо-двигательного аппарата. Эти заболевания сопровождаются головными болями, головокружением, повышенной утомляемостью. Длительное воздействие вибрации приводит к развитию вибрационной болезни, успешное лечение которой возможно только на ранней стадии ее развития.

Эффект воздействия вибраций на человека зависит от их характеристик (амплитуда, частота, период). Общие воздействия связаны с резонансными колебаниями отдельных частей тела и внутренних органов. Например, резонансная частота отдельных частей тела и внутренних органов (желудок, органы брюшной полости) равна 7-8 Гц, резонансная частота глазного яблока - 80 Гц. Колебания с указанными частотами на рабочих местах весьма опасны, так как могут вызвать разрывы и повреждения органов человека.

При вибрациях малой частоты и переменного периода, которые ощущаются как тряска или толчки, могут возникать опасные перемещения тела, ушибы. Выполнение рабочих движений затруднено. Плавные низкочастотные колебания ощущаются как качка. Укачивание ("морская болезнь") возникает, как правило, при повышенной чувствительности рецепторов вестибулярного аппарата и внутренних органов.

Нормативным документом для нормирования шума является ГОСТ 12.1.003-83 ССБТ указанные в табл. 9.2.

Таблица 9.2

Допустимые уровни звукового давления и уровни звука.

Уровень звукового давления [дБ]

 Октавы со среднегеометрическими частотами [Гц]

63 125 250 500 1000 2000 4000 8000
99 92 86 83 80 78 76 74
Уровень звука, дБА
не более 85

Согласно ГОСТ 12.4.012-75 установлены предельно допустимые параметры вибрации, указанные в табл. 9.3.

Таблица 9.3

Частота колебаний, Гц Амплитуда наибольших перемещений при колебаниях, мм Скорость колебательных движений, мм/с
2 1,28 11,5
4 0,28 5
8 0,056 2
16 0,028 2
31,5 0,014 2
63 0,0072 2

Строительные нормы и правила СНиП 11-12-77 предусматривают защиту от шума строительно-аккустическими методами:

а) звукоизоляция ограждающих конструкций,

б) установка в помещениях звукопоглощающих конструкций,

в) применение глушителей аэродинамического шума,

г) правильная планировка и застройка территорий городов.

А также одним из основных методов уменьшения шума на производственных объектах является снижение шума в самих его источниках.

Методами снижения вибрации являются:

а) снижение вибрации в источнике ее возникновения,

б) конструктивные методы (виброгашение, виброденфирование - подбор определенных видов материалов, виброизоляция),

в) организационные меры,

г) организация режима труда и отдыха,

д) использование средств индивидуальной защиты (защита опорных поверхностей).

Освещение.

Из общего объема информации человек получает через зрительный канал около 80%. Качество поступающей информации во многом зависит от освещения: неудовлетворительно количественно или качественно оно не только утомляет зрение, но и вызывает утомление организма в целом. Нерациональное освещение может явиться причиной травматизма. Неправильная эксплуатация может привести к взрыву, пожару и несчастным случаям. При неудовлетворительном освещении, кроме того, снижается производительность и увеличивается брак продукции. Используется три вида освещения — естественное, искусственное и совмещенное.

Для оценки условий освещения пользуются понятием освещённости Е, измеряемой в люксах (лк.).

ОРУ подстанции освещается естественным светом, КРУН – боковым односторонним.

Оценка количественной характеристики естественного освещения выражается через КЕО в процентах. КЕО – отношение естественной освещённости, создаваемой светом, к значению одновременно наружной горизонтальной освещённости, создаваемой светом полного открытого небосвода, %:

(9.1)

Факторы, учитываемые при нормировании искусственного освещения:

1.      Характеристика зрительной работы;

2.      Минимальный размер объекта различения с фоном;

3.      Разряд зрительной работы;

4.      Контраст объекта с фоном;

5.      Светлость фона (характеристика фона);

6.      Система освещения;

7.      Тип источника света.

Кроме освещенности следует учитывать такие параметры света как:

1.      направление светового потока;

2.      отсутствие резкой границы в яркости рабочих поверхностей и окружающего поля зрения;

3.       отсутствие слепящего действия источника света;

4.      равномерность и постоянство освещения в зоне обзора и в поле зрения;

5.       благоприятный спектр света, близкий к дневному;

Если по технико-экономическим причинам нельзя обеспечить оптимум, то освещение должно быть не менее предельно-допустимого.

Для работы в тёмное время суток на ОРУ и в КРУН применяется искусственное освещение. Искусственное освещение подразделяется на рабочее и аварийное освещение.

Рабочее освещение – освещение, необходимое для осуществления трудового процесса.

Аварийное освещение – освещение для продолжения работы при отключении рабочего освещения.

Рабочее освещение ОРУ 110кВ выполняется прожекторами, установленными на осветительных мачтах. Освещение КРУН предусмотрено светильниками с газоразрядными лампами.

Нормы освещённостей для искусственного освещения рассматриваются в СНиП-II-4-79.

Питание источников аварийного освещения осуществляется от независимых источников питания. Для аварийного освещения применяются светильники с лампами накаливания.

Электробезопасность.

Основная опасность при обслуживании РУ подстанции является опасность поражения электрическим током. Источником опасности является открытые токоведущие части и токоведущие части с изоляцией, которая может оказаться по каким либо причинам нарушенной. Воздействие тока на организм человека можно разделить на биологическое, термическое, электрическое. Оно вызывает различные нарушения в организме , вызывая как местное поражение тканей и органов, так и общее поражение организма.

Существует два вида поражения электрическим током: электрический удар и местные электрические травмы. К травмам относятся ожоги, электрические знаки, электрометаллизация кожи и электрофтальмия. При электрическом ударе воздействию тока подвергается нервная система, что может привести к остановке сердечной и дыхательных мышц. Интенсивность воздействия тока на организм определяется множеством факторов, например длительностью прохождения тока, путём прохождения тока через тело, родом тока, индивидуальными особенностями человека.

Пороговые значения тока ;

1) пороговый ощущаемый ток 5-7 мА/50Гц

2) пороговый не отпускающий ток 10-15 мА/50Гц

3) пороговый фибриляционный ток 70-100 мА/50Гц

Основное условие обеспечения безопасности обслуживающего персонала - это исключение возможного прикосновения к токоведущим частям. Для этого необходимо ограждать все токоведущие элементы установок и использовать защитные средства, которые делятся на основные и дополнительные.

Основные защитные средства - средства, которые выдерживают рабочее напряжение и позволяют производить работы непосредственно на токоведущих частях.

Дополнительные защитные средства - средства, которые не позволяют производить работы на токоведущих частях.

В пределах территории подстанции возможно замыкание на землю в любой точке. В месте перехода тока в землю, если не предусмотрены особые устройства для проведения тока в землю, возникают значительные потенциалы, опасные для людей, находящихся вблизи. Для устранения этой опасности на подстанции предусматривают заземляющие устройства, назначение которых заключается в снижении потенциалов до приемлемых значений.

На площадке РУ вдоль рядов оборудования, подлежащего заземлению, укладываются проводники в землю на глубине 0,7 м. Предусматриваем также проводники в поперечном направлении. Таким образом, образуется сетка с квадратными или прямоугольными ячейками. Сетку дополняют некоторым числом вертикальных проводников.


Информация о работе «Выбор схемы развития районной электрической сети»
Раздел: Инвестиции
Количество знаков с пробелами: 101980
Количество таблиц: 40
Количество изображений: 8

Похожие работы

Скачать
59271
31
8

... реактивной мощности имеет вид: где – коэффициент мощности, задано ; m – предварительное число трансформаций, m = 2; Требуется источник реактивной мощности. 2.3 Размещение компенсирующих устройств в электрической сети Конденсаторные батареи суммарной мощностью QkS должны быть распределены между подстанциями проектируемой сети таким образом, чтобы потери активной мощности в ...

Скачать
71863
24
6

... проводиться тремя способами: по уровню - ведется путем сравнения реальных отклонений напряжения с допустимыми значениями; по месту в электрической сети - ведется в определенных точках сети, например в начале или конце линии, на районной подстанции; по длительности существования отклонения напряжения. Регулированием напряжения называют процесс изменения уровней напряжения в характерных точках ...

Скачать
131188
33
7

... электрических соединений на всех напряжениях переменного постоянного тока для нормальных режимов. Такие схемы должны обеспечивать сочетание максимальной надежности и экономичности электроснабжения потребителей. Переключения в электрических схемах распредустройств подстанций, счетов и зборок должны производится по распоряжению или с ведома вышестоящего дежурного персонала (или старшего электрика ...

Скачать
27001
12
4

... потерь реактивной мощности в трансформаторах воспользуемся формулой (5): (5) Так как мы рассматриваем электрическую сеть 110/10 кВ, то  примем равным 1, выбираем из таблицы 4.9 [1] в соответствии с данными нашей сети. . Суммарную наибольшую реактивную мощность, потребляемую с шин электростанции или районной подстанции, являющихся источниками питания для проектируемой сети определим по ...

0 комментариев


Наверх