6.3.2. Выбор разъединителей на стороне ВН.
Разъединитель – это контактный коммутационный аппарат, предназначенный для отключения и включения электрической цепи без тока или с незначительным током. При ремонтных работах разъединителем создаётся видимый разрыв между частями, оставшимися под напряжением и аппаратами, выведенными в ремонт. Разъединители позволяют производство следующих операций:
- отключение и включение нейтрали трансформаторов и заземляющих дугогасящих реакторов при отсутствии в сети замыкания на землю;
- зарядного тока шин и оборудования всех напряжений (кроме батарей конденсаторов);
- нагрузочного тока до 15А трёхполюсными разъединителями наружной установки при напряжении 10 кВ и ниже. К разъединителям предъявляются следующие требования:
- создание видимого разрыва в воздухе, электрическая прочность которого соответствует максимальному импульсному напряжению;
- электродинамическая и термическая стойкость при протекании токов короткого замыкания;
- исключение самопроизвольных отключений;
- чёткое включение и отключение при наихудших условиях работы (обледенение, ветер).
Выбор разъединителей выполняется:
- по напряжению установки: ;
- по току: ;
- по конструкции;
- по электродинамической стойкости:;
- по термической стойкости:.
Из справочника [1] выбираем разъединитель РНДЗ.2-110/1000У1 и проверяем его параметры с расчётными величинами.
Таблица 6.2
Выбор разъединителей.
Условия выбора | Расчётные величины | Каталожные данные разъединителя РНДЗ.1-110/1000У1 РНДЗ.2-110/1000У1 |
110кВ | 110кВ | |
229А | 1000А | |
10,082кА | 80кА | |
10,51кА2*с | 31,52*4=3969кА2*с |
6.3.3. Выбор трансформатора тока.
Трансформатор тока предназначен для уменьшения первичного тока до значений наиболее удобных для измерительных приборов и реле, а также для отделения цепей измерения и защиты от первичных цепей высокого напряжения.
Трансформатор тока выбирают:
- по напряжению установки ;
- по току , ;
Номинальный ток должен быть как можно ближе к рабочему току установки, так как недогрузка первичной обмотки приводит к увеличению погрешностей;
- по конструкции и классу точности;
- по электродинамической стойкости:
;
где - ударный ток КЗ по расчёту;
- кратность электродинамической стойкости по каталогу;
- номинальный первичный ток трансформатора тока;
- ток электродинамической стойкости.
- по термической стойкости ;
где - тепловой импульс по расчёту;
- кратность термической стойкости по каталогу;
- время термической стойкости по каталогу;
- ток термической стойкости;
- по вторичной нагрузке ,
где -вторичная нагрузка трансформатора;
- номинальная допустимая нагрузка трансформатора тока в выбранном классе точности.
Индуктивное сопротивление токовых невелико, поэтому . Вторичная нагрузка состоит из сопротивления приборов, соединительных проводов и переходного сопротивления контактов:
(6.4)
Сопротивление приборов определяется по выражению:
(6.5)
где - мощность потребляемая приборами;
- вторичный номинальный ток прибора
Сопротивление контактов принимаем 0,1Ом. Сопротивление соединительных проводов зависит от их длины и сечения. Чтобы трансформатор тока работал в выбранном классе точности, необходимо выдержать условие:
, (6.6)
откуда (6.7)
Сечение соединительных проводов определяем по формуле:
(6.8)
где - удельное сопротивление провода с алюминиевыми жилами;
- расчётная длина, зависящая от схемы соединения трансформатора тока.
Таблица 6.3
Вторичная нагрузка трансформатора тока.
Прибор | Тип | Нагрузка по фаза, ВА | ||
А | В | С | ||
Амперметр | Э-350 | 0,5 | - | - |
Ваттметр | Д-350 | 0,5 | - | 0,5 |
Счётчик активной мощности | СА-И670М | 2,5 | 2,5 | 2,5 |
Счётчик реактивной мощности | СР-4И676 | 2,5 | 2,5 | 2,5 |
Итого: | 6 | 5 | 5,5 |
Самая нагруженная Фаза «А». Общее сопротивление приборов:
Ом
Для ТФЗМ 110-У1 Ом
Допустимое сопротивление провода: Ом
Для подстанции применяем кабель с алюминиевыми жилами, ориентировочная длина которого 60м, трансформаторы тока соединены в неполную звезду, поэтому , тогда
мм2.
Принимаем контрольный кабель АКРВГ с жилами сечением 4мм2
Ом
Таким образом, вторичная нагрузка составляет:
Ом
Таблица 6.4
Расчёт трансформатора тока 110кВ.
Расчётные данные | Данные ТФЗМ-110-У1 |
=110 кВ | =110 кВ |
=229 А | =300 А |
=10,082 кА | =80 кА |
=10,51 кА2*с | =1200 кА2*с |
=1,08 Ом | =1,2 Ом |
Выбираем трансформатор тока ТФЗМ-110-У1 с коэффициентом трансформации 300/5А, класс точности 0,5Р,10Р/10Р.
... реактивной мощности имеет вид: где – коэффициент мощности, задано ; m – предварительное число трансформаций, m = 2; Требуется источник реактивной мощности. 2.3 Размещение компенсирующих устройств в электрической сети Конденсаторные батареи суммарной мощностью QkS должны быть распределены между подстанциями проектируемой сети таким образом, чтобы потери активной мощности в ...
... проводиться тремя способами: по уровню - ведется путем сравнения реальных отклонений напряжения с допустимыми значениями; по месту в электрической сети - ведется в определенных точках сети, например в начале или конце линии, на районной подстанции; по длительности существования отклонения напряжения. Регулированием напряжения называют процесс изменения уровней напряжения в характерных точках ...
... электрических соединений на всех напряжениях переменного постоянного тока для нормальных режимов. Такие схемы должны обеспечивать сочетание максимальной надежности и экономичности электроснабжения потребителей. Переключения в электрических схемах распредустройств подстанций, счетов и зборок должны производится по распоряжению или с ведома вышестоящего дежурного персонала (или старшего электрика ...
... потерь реактивной мощности в трансформаторах воспользуемся формулой (5): (5) Так как мы рассматриваем электрическую сеть 110/10 кВ, то примем равным 1, выбираем из таблицы 4.9 [1] в соответствии с данными нашей сети. . Суммарную наибольшую реактивную мощность, потребляемую с шин электростанции или районной подстанции, являющихся источниками питания для проектируемой сети определим по ...
0 комментариев