4.4. Определение глубины предпрогнозной ретроспекции с учетом старения информации

Наиболее общая постановка задачи сравнения результатов прогнозных расчетов, полученных с использованием различной глубины ретроспекции, заключается в следующем. С целью выявления периода старения информации определяется k значений глубины ретроспекции (Т2, Т3, …, Тk+1). Значение Т1=0 целесообразно принять за контрольную точку, так как вполне очевидно, что в этой точке информация еще не устарела и ее можно считать наиболее ценной и достоверной. В ходе прогнозных исследований определяется … значений точечных оценок прогноза Xj(Tj). Если ввести в рассмотрение разность точечных оценок

Z1=X2(T2)-X1(T1), Z2=X3(T3)-X3(T2),…,Zj=
=Xj+1(Tj+1)-Xj(Tj),…Zk=Xk+1(Tk+1)-Xk(Tk), (2.27)

то значения Zj(j=1, …, k) можно считать независимыми случайными величинами, поведение которых описывается некоторым неизвестным законом распределения F(Z).

Ограниченный объем используемой информации не позво­ляет достаточно надежно его определить методами математи­ческой статистики. Поэтому требуется разработка специальных методов решения задачи сравнения результатов прогнозов по ограниченному набору ретроспекций.

Следует заметить, что выборочные моменты (математиче­ское ожидание, дисперсия и др.) могут быть определены по вы­борке Zj(j=1, …, k).

Определение закона распределения случайной величины Z и его анализ позволяют дать статистическую и смысловую интер­претацию результатов сравнения прогнозных исследований, оп­ределить коэффициент доверия (или построить доверительную область), проверить статистическую гипотезу о непротиворечи­вости данных прогноза и контрольного значения динамического ряда.

Традиционно для описания подобного рода случайных ве­личин обращаются прежде всего к нормальному (гауссовскому) распределению, которое играет фундаментальную роль в вероятностно-статистических исследованиях.

Традиционная универсальность нормального закона, как было отмечено выше, объясняется, прежде всего, полнотой теоретических исследований, относящихся к нему. При са­мых широких предположениях суммы случайных величин ведут себя асимптотически нормально (соответствующие ус­ловия и составляют содержание так называемой предельной теоремы). Во многих случайных величинах можно видеть суммарный аддитивный эффект большого числа независимых причин и т.д. В силу изложенных обстоятельств этот закон распределения широко используется в качестве модели для различных статистических совокупностей. В тех случаях, ко­гда гипотеза о принадлежности статистической совокуп­ности генеральной нормальной совокупности не под­тверждается опытными данными или когда теорети­ко-вероятностная схематизация вероятностного эксперимента порождает другую модель, представляется целесообраз­ным в силу универсальности нормального закона обра­титься к теории суммирования случайного числа нормаль­ных случайных величин.

Теоретической основой процедуры уточнения математиче­ской модели формирования закона распределения случайной величины Z является аппарат характеристических функций.

В этом случае функция распределения F(Z) суммы случай­ного числа n случайных величин Z, на основании мультиплика­тивного свойства характеристических функций определяется характеристической функцией

(2.28)

где характеристическая функция нормальной слу­чайной величины с параметрами m и a.

В качестве примера, имеющего прикладное значение в рас­сматриваемой области, рассмотрим распределение суммы пуассоновского числа нормально распределенных случайных вели­чин. С этой целью составим уравнение

(2.29)

правая часть которого равна эмпирической характеристиче­ской функции. Параметры нормального закона распределения m и a и закона Пуассона v могут быть определены в результате минимизации невязки или с помощью моментов. Метод момен­тов применительно к рассматриваемому уравнению заключа­ется в приравнивании некоторого количества выборочных моментов, оцениваемых по правой части уравнения (2.29), к со­ответствующим теоретическим, определяемым по характери­стической функции левой части уравнения в соответствии с за­висимостью

(2.30)

Естественно, что число получаемых в этом случае уравне­ний должно быть равным числу оцениваемых параметров (в данном случае трем).

Последовательно дифференцируя характеристические функции по t и приравнивая в полученных производных значе­ния t нулю, можно составить следующую систему уравнений

(2.31)

где Sk-асимметрия закона распределения, равная центральному моменту третьего порядка.

После некоторых алгебраических преобразований из систе­мы уравнений (2.31) можно определить среднее число сумми­руемых случайных величин (параметр закона Пуассона).

(2.32)

математическое ожидание и среднеквадратическое отклонение суммируемой нормальной случайной величины

 и (2.33)

В формулах (2.32) и (2.33) коэффициент вариации Vz опре­деляется по первым двум моментам  и

Используя формулу обращения

можно получить плотность распределения пуассоновского чис­ла нормальных случайных величин

(2.34)

Очевидно, что плотность распределения (2.34), а точнее па­раметры v, m и s, зависят от объема выборок случайных вели­чин {Zj}, j=1,…,k; j=1, k=1, k-1 и т.д. Последовательно от этапа к этапу анализируя ретроспективную информацию, можно построить семейство плотностей распределения fj(z) (j=k, k-1, …). Задачу отбраковки устаревшей информации в этом случае сводится к решению последовательного ряда задач проверки статистических гипотез о принадлежности контрольного значе­ния параметра Z0 генеральной совокупности, описываемой за­коном распределения с плотностью (2.34). При этом следует учесть, что в силу проведенной схематизации процесса Z0=0. Тогда, задаваясь уровнем значимости a и учитывая симметрич­ный характер закона распределения (2.34), можно найти такое значение индекса j, при котором выполнилось бы одно из сле­дующих неравенств

(2.35)

где  – функция Лапласа.

Справедливость соотношений (2.35) вытекает из очевидной процедуры вычисления функции распределения через плотность (2.34)

(2.36)

Таким образом, задача определения глубины предпрогнозной ретроспекции с учетом старения информации может быть достаточно надежно решена традиционными методами матема­тической статистики с помощью математической модели (рас­пределения сумм пуассоновского числа нормально распреде­ленных случайных величин).

ЗАКЛЮЧЕНИЕ

В данной курсовой работе рассмотрены основные методы прогнозирования экономической среды с учетом фактора старения информации на примере рыночного механизма спрос-предложение.

Проанализировав полученную информацию, можно сделать выводы о том, что для различных наук, отраслей, экономических сфер старение информации понятие растяжимое. Для одних информация, полученная десять лет назад, все еще представляется важной, а для других, неважной является информация, полученная в течении последних суток.

Также для различных отраслей применяют различные методы учета фактора старения информации. С помощью таких методов можно из имеющейся в наличии информации для прогнозирования выжать максимум полезной информации.

Список литературы

1.   Б.П Ивченко, Л.А. Мартыщенко, И.Б. Иванцов. «Информационная микроэкономика». Часть 1. Методы анализа и прогнозирования, СПб.: «Нордмед-Издат», 1997. – 160 с.

2.   Романенко И.В. Социальное и экономическое прогнозирование: Конспект лекций. – СПб.: Издательство Михайлова В.А., 2000 г. – 64 с.

3.   Прогнозирование и финансирование экономики в условиях рыночных отношений. – М.: Мысль, 1970. – 448 с.

4.   Рябушкин Б.Т. Применение статистических методов в экономическом анализе и прогнозировании. – М.: Финансы и статистика, 1987. – 75 c.

5.   Статистическое моделирование и прогнозирование: под ред. А.Г. Гранберга. – М.: Финансы и статистика, 1990. – 382 с.

6.   Грисеев Ю.П. Долгосрочное прогнозирование экономических процессов: – Киев: Наукова думка, 1987 – 131 с.

7.   Шибалкин О.Ю. Проблемы и методы построения сценариев социально-экономического развития. – М.: Наука, 1992 – 176 с.

8.   Суворов А.В. Методы построения макроэкономических сценариев социально-экономического развития// Проблемы прогнозирования. – 1993. – №4 – сс. 27-39

9.   Калинина А.В. Современный экономический анализ и прогнозирование (микро- и макроуровень): Учебное пособие // А.В. Калинина и др., Межрегиональная Академия управления персоналом, 2-е изд. –Л.: МАУП, 1998.

10.              Глущенко В.В. Прогнозирование –2-е изд., Испр. и доп. –СПб: СПГУВК, 1999. –245 с.

Приложение А:

Таблица 1

Этапы

Стадии

Общая постановка задачи

1.   Общее знакомство с проблемой, указание цели;

2.   Определение используемых понятий;

3.   Сбор и анализ данных, оценка их точности;

4.   Анализ различных возможных общих постановок задач с точки зрения существования и единственности их решения и его использования; уточнение цели.

Построение конструкций для решения задачи

1.   Формулировка априорных предположений и построение знаковой модели для математической постановки задачи;

2.   Математическая постановка задачи.

Решение задачи

1.   Построение алгоритма решения математической задачи;

2.   Получение решения математической задачи (обработка данных).

Интерпретация решений

1.   Проверка полученного решения в соответствии с известными принципами и законами и экспериментальными данными;

2.   Определение области применимости и точности полученного решения. Перспектива использования в практических и теоретических целях.

Приложение В:

Таблица 2 Принципы системного подхода

Наименование принципа

Его содержание
Целостности Проблема анализа рыночного спроса рассматривается как самостоятельная проблема или как часть другой, более общей, проблемы, в которую она входит. Система. Выделенная для самостоятельного исследования, должна иметь возможность изменять своё состояние (движение) в зависимости от состояния старших или младших (в иерархическом смысле) систем.
Многомерности Проблема анализа рыночного спроса рассматривается с позиции таких концепций, которые учитывают основные существенные факторы и взаимовлияние на спрос сопутствующих и конкурирующих видов товаров.

Неопределённости и
стохастичности

Изменение рыночного спроса происходит под влиянием различных воздействий. Анализ показателей спроса должен производиться своевременно (в реальном масштабе времени), а математические зависимости, описывающие закономерности рыночного спроса, должны содержать в своей структуре модель прогнозирования. Кроме того, необходимо учитывать, что исходная информация, которую реально удастся собрать и подготовить для решения проблемы, оказывается, как правило, в значительной степени неполной и неточной. Статистическому анализу может быть подвергнута лишь некоторая часть всей совокупности микроэкономических параметров (характеристик), статистическое обследование всей генеральной совокупности затрудняется малым объёмом наблюдений.

Приложение С:

Таблица 3

Направления и методы прогнозных исследований в микроэкономике.


п/п

Методы прогнозирования

Краткосрочное

Среднесрочное

Долгосрочное

1 Корреляционно-регресионный анализ временных тенденций ** ++

++

-

2 Метод экспоненциального сглаживания ** +

++

-

3 Экстраполяция временных тенденций по отшибающим кривым ** -

-

+

4 Метод статистического моделирования временных тенденций ** ++

++

-

5 Анкетные опросы экспертов +

++

-

6 Выработка коллективного мнения экспертов -

++

+

7 Системный анализ результатов фундаментальных исследований * - +

++

8 Структурные схемы целей развития экономической системы и ее отдельных подсистем -

-

+

9 Сценарий действий экономических структур -

+

++

10 Игровое моделирование ** -

++

+

11 Генерация идей в ходе «мозговой атаки» -

++

+

12 Морфологический анализ * -

+

++

13 Историческая аналогия * -

-

+

«-» - применение метода прогнозирования невозможно или нецелесообразно;

«+» - применение метода прогнозирования целесообразно и обосновано;

«++» - метод находит преимущественное применение при прогнозировании;

* - метод прогнозирования требует периодического учета фактора старения информации;

** - устаревшая исходная информация может оказать существенное влияние на конечный результат (учет фактора старения информации требует постоянного учета в реальном масштабе времени).


Информация о работе «Прогнозирование с учетом фактора старения информации»
Раздел: Кибернетика
Количество знаков с пробелами: 52127
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
28684
2
0

... при их агрегировании. Если какие-либо регуляторы линейно или нелинейно зависят друг от друга, то в системе присутствует ненужная информация, искажающая результаты анализа, прогнозирования и, как следствие, результаты планирования. Для этих целей необходим множественный анализ всей совокупности заданных показателей. Разрабатываемые многими странами индикативные планы фактически являются планами- ...

Скачать
394125
9
10

... образования не в полной мере нацелено на цели и задачи экономических реформ, и вместе с тем, в недостаточной мере предпринимаются шаги для совершенствования управления образовательным фактором экономического роста Павлодарской области. В частности, из данных, приведенных в подразделе 2 раздела 2, мы видим, что для Павлодарского региона характерна проблема снижения численности населения, и только ...

Скачать
194192
0
8

... конкретных виновников этих ошибок. Отсюда большое воспитательное и стимулирующее значение работы по проверке для всего коллектива работников библиотеки. 3.2 Анализ организации контроля в технологическом управлении фондами муниципальных библиотек Кировской области В рамках написания данной дипломной работы в феврале-марте 2010 года нами было организовано социологическое исследование. Целью ...

Скачать
47182
0
0

... логическая схема исследования, то она нуждается в апробации для конкретного объекта прогноза, уточнениях частных методик и методов. Представляется, что общетиповая методика вполне может быть использована в социальном прогнозировании на макроуровне.Часть 2. Исследование будущего России в контексте современных глобальных тенденций Будущим России и мира обеспокоены не только отечественные ученые. В ...

0 комментариев


Наверх