Сложения и вычитания чисел с плавающей запятой

9223
знака
2
таблицы
13
изображений

-ми разрядный счётчик на триггерах типа D серии К155

(К155ТМ5 – 4 D-триггера)


Анализ программы на примерах

Y1 = 0 1001101 110100101110011011100011 = 0 4D D2E6E3

X1 = 1 1001011 110001100101110110100111 = 1 4B C65DA7

Выравнивание порядков:

МК: РгС>РгD (01001101>01001011) переход на МК1

MК1: сдвигаем мантиссу Х1 вправо на 4 разр. получаем 000011000110010111011010 и увел. порядок Х1 на 1 получаем 01001100 переход на МК

МК: РгС>РгD (01001101>01001100) переход на МК1

МК1: сдвигаем мантиссу Х1 вправо на 4 разр. получаем 000000001100011001011101 и увел. порядок Х1 на 1 получаем 1001101 переход на МК

МК: РгС=РгD (01001101=01001101)

Порядки выравненны.


Сложение мантисс:

ТгЗн1  ТгЗн2 переход на М3

М3: ТгЗн1  0  РгВ = (00110010 111111110011100110100010); РгСм=РгА + РгВ + 1 = 01011011 110100100010000010000110;

См[0] = 0  переход на М1

М1: РгСм [ 1  7]: = Сч1 [1  7] = 1001101;

РгСм [0] :== если Тг3н1=0 то 0;

ШИВых: = РгСм = 0 1001101 110100100010000010000110 = 0 4D D22086 ;

КОНЕЦ.


Y2 = 0 1001100 110100101110011011100011 = 0 4С D2E6E3

X2 = 0 1001101 110001100101110110100111 = 0 4D C65DA7

Выравнивание порядков:

РгD > РгС  переход на МК2

МК2: сдвигаем мантиссу Y2 вправо на 4 разр. получаем 000011010010111001101110; уменьшаем порядок Х2 на 1 получаем 1001100; РгD = РгС

Порядки выравненны.


Сложение мантисс:

ТгЗн1 = ТгЗн2  См = РгА + ргВ = 00000000 110100111000110000010101; переход на М1

М1: РгСм [ 1  7]: = Сч1 [1  7] = 1001110;

РгСм [0] :== если Тг3н1=0 то 0;

ШИВых: = РгСм = 0 1001101 110100111000110000010101 = 0 4D D38C15;

КОНЕЦ.


Сложения и вычитания чисел с плавающей запятой

1. Производится выравнивание порядков чисел. Порядок меньшею (по модулю) числа принимается равным порядку большего числа, а мантисса меньшего числа сдви­гается вправо на число S-ичных разрядов, равное разности порядков чисел.

2. Производится сложение (вычитание) мантисс, в ре­зультате чего получается мантисса суммы (разности).

3. Порядок результата принимается равным порядку большего числа.

4. Полученная сумма (разность) нормализуется.

Примем, что числа с плавающей запятой имеют основание порядка S = 16.

Первое слагаемое (уменьшаемое) поступает на входной регистр Рг1, второе слагаемое (вычитаемое) — на входной регистр Рг3. Знаки слагаемых хранится в триггерах зна­ков Тг3н1 и Тг3н2. Смещенные порядки слагаемых пере­сылаются в регистры РгС и РгD. Схема СОЛО применяется для сравнения и выравнивания порядков слагаемых. Сум­матор См, его входные регистры РгА и РгВ и выходной ре­гистр РгСм используются при сложении (вычитании) ман­тисс, а также при передаче мантисс в процедурах выравни­вания порядков и нормализации результата.

Операция сложения (вычитания) может быть подразде­лена на следующие этапы: 1) прием операндов, 2) выравни­вание порядков, 3) сложение мантисс и 4) нормализация результата.

Прием операндов описывается следующей микропрограммой:

РгЗ: = ШИВх, РгВ: = 0, Тг3н1: = Рг3[0]

< прием X, установка в 0 входного регистра сумматора для Х и фиксация знака Х в Тг3н1>;

Рг1: = ШИВых, РгА: = 0, Тг3н2: = если сложение то Рг1[0] иначе < прием Y, установка в 0 вход­ного регистра для Y, фиксация знака Y в ТгЗн2 при сложении либо противоположного знака при вычита­нии >;

Выравнивание порядков начинается с их сравнения. Ман­тисса числа с меньшим порядком при выравнивании сдви­гается вправо на число разрядов, равное разности порядков. Поскольку рассматриваемые числа с плавающей запятой имеют S = 16, сдвиг осуществляется шестнадцатеричными разрядами, т. е. каждый сдвиг производится на четыре двоичных разряда.

При сравнении порядков возможны пять случаев:

1) (m— число разрядов мантиссы). В ка­честве результата суммирования сразу же может быть взято первое слагаемое, так как при выравнивании порядков все разряды мантиссы второго слагаемого принимают нулевое значение;

2) . В качестве результата суммирования может быть взято второе слагаемое;

3) . Можно приступить к суммированию мантисс;

4) Мантисса второго слагаемого сдвигается на разрядов вправо, затем производится сум­мирование мантисс;

5) Перед выполнением сумми­рования мантисс производится cдвиг на разрядов вправо мантиссы первого слагаемого.

За порядок результата при выполнении суммирования принимается больший из порядков операндов.

Выравнивание порядков осуществляется следующим образом. Смещенный порядок числа Х из РгЗ передается в регистр РгD, РгСОЛО и в счетчик, соединенный с выхо­дом РгСОЛО. Затем в РгС передается смещенный поря­док числа Y:

РгС: = О, PD [0]: = 0, PгD [1  7] := Рг3 [1  7];

РгСОЛО: = РгС  PгD;

Сч1: = РгСОЛО;

РгС [О]: = 0, РгС [1  7] = Pг [1  7];

После этого начинается сравнение порядков чисел Х и Y на СОЛО и сдвиг мантиссы числа с меньшим порядком вправо,

Для того чтобы учесть случаи 1 и 2, возникающие при сравнении порядков, и не делать лишних сдвигов ман­тиссы, превратившейся в процессе выравнивания порядков в 0, на счетчике циклов СчЦ фиксируется предельное число сдвигов, равное количеству шестнадцатеричных цифр ман­тиссы:

СчЦ: = 6;

При выполнении сдвига на один шестнадцатеричный разряд содержимое СчЦ уменьшается на 1. При СчЦ = 0 сдвиги прекращаются и в качестве результата берется большее слагаемое.

Микропрограмма выравнивания порядков:

МК:

если РгС > РгD то МК1 иначе если РгС = РгD то МКЗ иначе МК2;

MK1:

PгB [8  31]: = PгЗ [8  31];

РгСм: = П(4) См, РгСм [0  3]: = 0, Сч1 := Сч1+1

;

Рг3[8  31]:=РгСм[8  31]; РгD:=Сч1, СчЦ: = СчЦ - 1

;

если СчЦ  0 то МК;

РгВ: = 0, РгА: = Рг1, РгСм := См;

ШИВых: = РгСм;

конец

;

МК2:

РгА[8  31] :=Рг1 [8 31];

РгСм: = П (4) См, РгСм [0  3] : = 0, Сч1 := Сч1-1

;

Рг1 [1  31]: = РгСм [8  31], РгD: = Сч1, СчЦ: = СчЦ - 1,

если СчЦ  0, то МК4 иначе РгА: =0, РгВ: =Рг3, РгСм: =См, ШИВых: = РгСм,

конец

;

МК4:

если РгС > PгD то МК2;

PгD[0]: = 0, РгD[1  7]: = Рг3[1  7], РгС = 0;

РгСОЛО : = РгС  PгD;

Сч1: = РгСОЛО

;

МКЗ:

РгСм: = 0, Pгl [0  7] : = РгСм, РгЗ [0  7] : = РгСм

;


После выравнивания порядков модули мантисс хра­нятся в Pгl и РгЗ в разрядах с 8-го по 31-й, их знаки в Тг3н2 и Тг3н1, а порядок результата в Сч1.

Сложение мантисс. Анализируются знаки мантисс и при равенстве знаков модули мантисс складываются. Если оказывается, что См [7] = 1, то возникло переполнение при сложении мантисс. В случае переполнения мантисса суммы сдвигается на четыре двоичных разряда (один шестнадцатеричный разряд) вправо, а порядок увеличивается на 1 (Сч1: = Сч1 + 1). Если после этого Сч1 [0] = 1, то формируется признак прерывания из-за переполнения по­рядка. Если переполнения нет, то в РгСм формируется ре­зультат операции, для чего содержимое Сч1 [1  7] за­носится в РгСм [1  7], в РгСм [0] передается знак, а в РгСм [8  31]— мантисса суммы.

При различных знаках мантисс отрицательная мантисса передается на входной регистр сумматора в обратном коде и производится суммирование ее с прямым кодом положи­тельной мантиссы и 1, прибавляемой к младшему разряду сумматора. Знак результата фиксируется в триггере знака. От полученного результата, если он отрицателен, берется его модуль. Если результат нормализован (См [8  11]  0), то на РгСм заносятся знак результата (по значению триггера знака), порядок по значению Сч1 и модуль мантиссы.

Если результат не нормализован и нет исчезновения значимости (мантисса не равна 0), производится нормали­зация. Мантисса результата сдвигается влево и одновре­менно уменьшается порядок результата (Сч1: = Сч1 - 1). При отрицательном переполнении порядка (Сч1 [0] = 1) формируется признак исчезновения порядка. Если нормализация завершается без исчезновения порядка, фор­мируется результат операции из кода знака, порядка и мантиссы.

Микропрограмма процедуры сложения мантисс:


если ТгЗн  Тг3н2 то МЗ;

РгА: = Рг1, РгВ: = РгЗ;

РгСм: = См;

если См[7] = 1 то М2;

М1:

РгСм [ 1  7]: = Сч1 [1  7];

РгСм [0] :== если Тг3н1=0 то 0 иначе 1;

М:

ШИВых: = РгСм;

конец;

М2:

Сч1:=Сч1+1, РгСм := П(4)См, РгСм[0  3]:=0;

если Сч1[0]=0 то М1 иначе прерывание из-за переполнения порядка;

МЗ:

если Тг3н1=0 то РгА :=, РгВ: = РгЗ иначе

РгА : = Рг1, РгВ: = ;

РгСм :=РгА+РгВ +1;

если См[0]=0 то M4;

Рг3:= РгСм;

РгА :=0, РгВ: =;

РгСм:= РгА +РгВ +1;

М4:

ТгЗн1 := РгЗ [0];

М5:

если См [8  11]  0 то M1;

если См  0 то М6;

РгСм: = 0, прерывание из-за потери значимости;

M6:

Сч1:=Сч-1, РгСм := Л(4)См, РгСм[2831]: = 0;

РгЗ: = РгСм;

РгВ : = РгЗ, РгА: = 0;

РгСм: = См;

если Сч1[0]=0 то М5;

РгСм: = 0, прерывание из-за исчезновения порядка;

Сложение и вычитание выполняются приближенно, так как при выравнивании по­рядков происходит потеря младших разрядов одного из слагаемых. В этом случае погрешность всегда отрицательна и может доходить до единицы младшего разряда. Чтобы уменьшить погрешность, применяют округление резуль­тата. Для этого может быть использован дополнительный разряд сумматора, в который после выполнения суммиро­вания добавляется 1.

5




Информация о работе «Сложения и вычитания чисел с плавающей запятой»
Раздел: Математика
Количество знаков с пробелами: 9223
Количество таблиц: 2
Количество изображений: 13

Похожие работы

Скачать
9432
2
0

... с их сравнения. Мантисса числа с меньшим порядком при выравнивании сдвигается вправо на число разрядов, равное разности порядков. Поскольку рассматриваемые числа с плавающей запятой имеют S = 16, сдвиг осуществляется шестнадцатеричными разрядами, т. е. каждый сдвиг производится на четыре двоичных разряда. При сравнении порядков возможны пять случаев: 1) (m— число разрядов мантиссы). В качестве ...

Скачать
21104
0
0

... . 3.2.2. Деление чисел с плавающей запятой выполняется в соответствии с формулой: X S_аpx_Аgx gx --- = ------ = S_аp_АX_а-py_А --- Y S_аpy_Аgy gy . При делении чисел с плавающей запятой мантисса частного равначастному от деления мантиссы делимого на мантиссу делителя, а порядокчастного - разности порядков делимого и делителя. Частное нормализуется и ...

Скачать
52124
1
13

... систем: 1) Возможность работы в различных режимах 2) модульная структура 3) стандартизация 4) иерархия 5) адаптация 6) сервис Структура ЭВМ ВС – совокупность компонентов и связей между ними. Архитектура ЭВМ – организация ЭВМ. Функциональная классификация: 1) по назначению – универсальные и специализированные. 2) многомашинные и многопроцессорные Основная особенность – параллельная работа ...

Скачать
34504
2
0

... этих кодов операция вычитания (или алгебраического сложения) сводится к арифметическому сложению. В результате упрощаются арифметические устройства машин. Для представления двоичных чисел в машине применяют прямой, обратный и дополнительный коды. Во всех этих кодах предусматривается дополнительный разряд для представления знака числа, причем знак «+» кодируется цифрой 0, а знак « — » - цифрой 1. ...

0 комментариев


Наверх