1. ВВЕДЕНИЕ
Современная функциональная диагностика располагает самыми различными инструментальными методами исследования. Некоторые из них доступны только узкому кругу специалистов. Самым распространенным и доступным методом исследования является электрокардиография, используемая в основном в кардиологии. Однако она с успехом применяется и при исследовании больных с заболеваниями легких, почек, печени, эндокринных желез, системы крови, а также в педиатрии, гериатрии, онкологии, спортивной медицине и т. д. Ежегодно производят десятки миллионов электрокардиографических исследований. Этот метод в настоящее время стал достоянием широкого круга врачей – не только специалистов, занимающихся функциональной диагностикой, но и кардиологов, терапевтов, педиатров, спортивных врачей, физиологов и т. д.
Медицинскую практику можно представить как многоэтапный многократно повторяющийся лечебно-диагностический процесс, целью которого является выявление симптомов заболевания и устранение их причин. Одним из важных моментов этапа сбора данных о состоянии здоровья пациента является снятие и анализ электрокардиограммы (ЭКГ). Существует большая гамма приборов для снятия, а в ряде приборов и анализа, ЭКГ. Следует отметить, что особенно эффективное использование медицинской аппаратуры на современном этапе стало возможно благодаря появлению микрокомпьютеров, поскольку приборы на основе микро-ЭВМ способны производить сложную математическую обработку данных. Кроме того, такие приборы позволяют представить большой объём информации различной степени сложности в ясной и доступной для медицинского персонала форме, что является непременным условием для быстрого принятия необходимых решений.
1.1 ОПИСАНИЕ ПЛАНА ОБОРУДОВАНИЯ ДЛЯ СНЯТИЯ ЭЛЕКТРОКАРДИОГРАММЫ
Основным инструментом исследования динамики развития сердечно-сосудистых заболеваний является электрокардиограф, так как он позволяет изучать сердечную деятельность пациента в любых условиях без проникновения непосредственно в область сердца, т.е. неинвазивным путём.
При помощи электрокардиографа можно:
- определить частоту сердечных сокращений и таким образом,
своевременно выявлять любые нарушения ритма сердца;
- обнаруживать нарушения электрической проводимости сердца
(типичная диагностика), которые могут приводить к снижению его
насосной функции и даже к ее полному прекращению;
- выявлять дефекты или повреждения в сердечной мышце,
вызванные хроническим или острым заболеванием.
Принципы действия электрокардиографа состоят в регистрации электрических сигналов, возникающих при сокращении сердечной мышцы, причём величина этих сигналов характеризует электрическую активность сердца.
Для измерения сигналов используют, как минимум, два электрода, которые располагают на поверхности тела пациента.
Нормально работающее сердце генерирует электрические импульсы, создающие электрическое поле. Математически это поле может быть представлено в виде вектора определенной величины и направления. Векторное представление электрических потенциалов сердца впервые было разработано известным датским физиологом Эйнтховеном: измеряя разности потенциалов между руками и между каждой рукой и левой ногой (т.е. вдоль каждой из сторон треугольника Эйнтховена), можно определить величину и направление вектора электрического поля сердца.
Разности потенциалов между вершинами равностороннего треугольника называют стандартными передними отведениями и обычно обозначают римскими цифрами I, II, Ш. Усиленные униполярные отведения позволяют измерять разности потенциалов между одной из вершин треугольника и средними значениями потенциалов на двух других вершинах. В случае отведений I, II, Ш изучается изменение вектора электрического поля сердца во фронтальной плоскости; в случае шести дополнительных отведении, называемых грудными, изучаются изменения вектора электрического поля сердца в поперечной плоскости.
Опытному терапевту для диагностирования любой сердечной патологии, как правило, достаточно стандартной 12-канальной записи ЭКГ, т.е. шести грудных, трёх усиленных униполярных (aVR, aVF, aVL) и трёх стандартных (I, II, Ш) отведений.
Нормальная электрокардиограмма (ЭКГ):
Зубец Р характеризует охват возбуждением мускулатуры предсердий. Начальная часть зубца Р соответствует возбуждению правого предсердия, затем следует возбуждение левого предсердия. Процесс реполяризации предсердий не находит отображения на ЭКГ, так как он наслаивается по времени на процесс деполяризации желудочков (комплекс QRS) К концу зубца Р предсердия максимально возбуждены, и начинается распространение волны возбуждения по АВ-узлу и пучку Гиса. Зубец Q свидетельствует о возбуждении межжелудочковой перегородки, которое быстро распространяется по волокнам Пуркинье на желудочки сердца Конечная часть комплекса QRS соответствует полной деполяризации желудочков. Охват желудочков возбуждением предшествует их механическому сокращению. Сегмент ST определяется от конца зубца S и в норме изоэлектричен Зубец Т отражает процесс быстрой реполяризации желудочков. Значение зубца U неясно.
Таблица 1. Обозначения элементов нормальной ЭКГ.
предсердия | желудочки | ||||
Зубец Р
| комплекс QRS | Сегмент ST | Зубец Т | Зубец U | |
Интервал PQ | Интервал QT |
Р-зубец соответствует сокращению предсердий, вызванному электрическим импульсом, который возникает в синоатриальном узле и по проводящей системе сердца достигает предсердий; P-R - интервал соответствует возбуждению атриовентрикулярного узла, a QRS - комплекс - сокращению желудочков; Т-зубец соответствует фазе восстановления желудочков. С помощью ЭКГ могут быть установлены различные нарушения в проводящей системе сердца, а, следовательно, и их причины.
... МЦК является автоматическое измерение основных параметров ЭКГ и логическая обработка результатов измерений. МЦК может, выполнятся как отдельный переносной прибор, так и в виде входного блока стационарного кардиографа. Рисунок 1.2 - Структурная схема кардиометра Обозначение блоков кардиометра: ВУ - входной усилитель; КНО - код номера отведения; Ф - фильтр нижних частот; КИ - код ...
... питания, блока сопряжения с компьютером, компьютер, индикатор. Блок – схема радиоприемника представлена на рисунке.2.1. Рисунок 2.1 - Структурная схема дистанционного комплекса контроля функционального состояния 1 – приемник; 2 – дешифратора; 3 – детектора; 4 – усилителя; 5 – усилителя вертикального отклонения; 6 – электронно-лучевой трубки; 7 – задающего генератора ...
... тревоги при появлении опасных аритмий (обычно индуцируется цветом светового табло с дифференциацией степени опасности); текущее время, время появления событий и время начала проводимой терапии и других мероприятий; сигнализацию обнаружения QRS-комплекса; состояние прохождения сигналов управления и контроля работоспособности прибора; сведения о нарушении работы кардиомонитора и локализации ...
... и вычислении параметров ЭКГ в компьютерном кардиологическом комплексе, необходимо разработать модуль анализа основных характеристик электрокардиограммы человека на базе алгоритма непрерывного вейвлет-преобразования. Для этого следует: изучить форму, стандарты описания и обозначения ЭКГ; построить модель идеальной ЭКГ провести сравнительный анализ эффективности системы Matlab и ...
0 комментариев