2. Электролитная очистка поверхности металлов от масляных и жировых загрязнений
Специфика процессов около активного электрода обуславливает комплексное воздействие, которое может быть использовано для обезжиривания поверхности. При этом будет действовать электрохимический механизм удаления загрязнений, связанный с выделением водорода на катоде и кислорода на аноде. Интенсивность этого процесса будет намного больше, поскольку величина плотности тока будет значительно превышать ту, которая достигается при низких напряжениях. Вскипание электролита у катода способствует размягчению загрязнений и ослаблению их сцепления с поверхностью металла. Кавитационные и электроэрозионные процессы вблизи обрабатываемой поверхности тоже ускоряют процесс обезжиривания.
химическим процессом - восстановлением высших окислов железа в низшие атомарным водородом. Для этого было предложено использовать как постоянный, так и переменный ток напряжением не менее 100 В при плотности тока 5...10 А/см . Предполагалась струйная подача электролита на обрабатываемое изделие. Обезжиривание при аналогичных режимах предложено проводить в: напряжение 90...180 В, плотность тока 8... 10 А/см2.
Проверка данного метода проведена для лент шириной 40 мм с использованием струйной (спреерной) подачи электролита (8...12%-ный раствор Nа2СОз) и шириной 250 мм методом опускания полосы в ванны с использованием частично погруженного в электролит ролика. Оптимальной в данных работах признана температура электролита 40...50 С, а концентрация Ка2СОз - выше 7%. Рекомендуемое напряжение зависит от скорости движения полосы: 90...120 В при скорости 0,5 м/с и 140...190 В при скорости 2 м/с и более. Оптимальные режимы позволили добиться удаления 98% загрязнений.
Электролитная обработка способствовала повышению пластичности, выразившейся в снижении давления на валки при прокатке полос и уменьшении содержания в стали углерода и азота. Последнее объясняется воздействием на цементит и карбонитриды железа, которые имеются в стали В виде включений. Замечено сглаживание микрорельефа поверхности, достигаемое за счет действия импульсных разрядов.
Было обнаружено проникновение смазки при прокатке на глубину 10...13 мкм в зависимости от степени деформации. На поверх ности углерод распределялся в виде крупных сегрегации площадью до 1 мм , Химическое обезжиривание, осуществляемое протиркой образцов бензином и ацетоном, не позволяло удалить загрязнения, проникшие по порам и трещинам в глубь металла. Последующая обработка в электролите при напряжениях 100...170 В позволила уменьшить площадь сегрегации в десятки раз и достичь количества остаточных загрязнений 0,14...0,23 мг/м2.
Для обезжиривания полосы концентрацию кальцинированной соды следует принимать не выше 7%, так как при более высокой концентрации затрудняется промывка полосы. Добавка до 2% фосфатов или до 0,6% поверхностно-активных веществ благоприятно влияет на процесс очистки и облегчает смыв с поверхности полосы остатков электролита. Добавка их в большем количестве приводит к усиленному пенообразованию и вторичному загрязнению поверхности при выходе из ванны.
Оптимальным признано рабочее напряжение 70... 120 В, что обеспечивает качественную очистку (удаление 97...98% загрязнений) при исходной загрязненности полосы 1,081...1,176 г/м .
Следует отметить, что указанные в данной работе значения поверхностной мощности (1,5...3,5) • 10 кВт/м представляются завышенными, так как получены с учетом предположения, что основное падение напряжения (до 70...80%) происходит в прикатодном слое.
Следует отметить, что при напряжениях, соответствующих переходу от режима II к режиму III, качество очистки ухудшается, что связано с нестабильностью процессов в этих условиях (рис. 3.1).
Позднее аналогичные исследования были проведены в Славянском филиале ВНИИМЕТМАШ.
В качестве электролита применяли водные растворы кальцинированной соды с концентрацией 8.-.12% или сульфата натрия (концентрация 15...20%) Применение некоторых нейтральных электролитов, в частности сульфатов, хлоридов, нитратов позволяет интенсифицировать процессы очистки поверхности. Однако эксплуатация таких электролитов связана с дополнительными трудностями: элементы циркуляционной системы должны быть выполнены из коррозионностойких материалов. Кроме того, в зоне обработки в этом случае наблюдается выделение токсичных газов, что предъявляет повышенные требования к вентиляции и технике безопасности.
Представляет интерес исследование зависимости удельных энергозатрат от плотности тока при очистке поверхности полосового проката. По результатам экспериментов, представленных на рис. 3.2, были сделаны следующие выводы:
1. Энергетические затраты на очистку минимальны при плотности тока 1 А/см2.
2. Очистка только при анодной поляризации требует энергии на порядок больше, чем при катодной.
По технологическим возможностям было предложено выделить пять зон,
Область А характеризуется высокой интенсивностью удаления загрязнения, в том числе и окислов, но энергозатраты при этом значительны.
Область Б-с поверхности проката удаляются смазка и сажистые загрязнения, при этом отпадает необходимость в щеточно-моечных машинах (ЩММ).
Область В характеризуется минимальными энергетическими затратами, применение ЩММ зависит от требований к качеству очистки.
В области Г обязательно применение ЩММ, энергетические затраты относительно невысокие.
Область Д не эффективна с точки зрения энергетических затрат.
Обработка при малых напряжениях и низких плотностях тока обычно применяется как финишная операция после проведения предварительной очистки другими способами.
При электролитной очистке поверхности загрязнения переходят в элей-тролит. В процессе эксплуатации электролит также загрязняется за счет постепенного растворения анода.
Результаты спектрального анализа, проведенного в инфракрасной области, свидетельствовали о том, что в процессе электролитной очистки происходит разложение эфиров и карбоновых кислот, входящих в состав эмульсола. Дифференциальный термический анализ неорганических загрязнений показал наличие двух эндотермических эффектов при 110 "С и 400 "С, обусловленных потерей сорбционной и кристаллизационной воды, и большого экзотермического эффекта с максимумом при 275 "С. Такие эффекты характерны для гелеоб-разных окислов РегОз • пН20. Данные рентгенофазного анализа показали, что основными составляющими неорганических загрязнений являются Ре(ОН)з и у-РезОз • НзО. При спектральном анализе обнаружены примеси 81, Са и др. После прокаливания на воздухе при температуре 1000 "С в составе загрязнений были обнаружены 5102 (а-тридимит), окислы РеО, Ре20з, Рез04, 4Са • ЗРе20з • Рез04.
Таким образом, в состав загрязнений входят: технологические масла и продукты их превращения (эфиры, спирты, альдегиды и кетоны), гидраты окислов железа, кремния и кальция, соли веществ, входящих в состав электролита, а также частицы металла, являющиеся продуктами износи полосы и оборудования при прокатке.
... ревматизма обусловила значительное снижение заболеваемости — до 0Д8 на 1000 детского населения. В разработку проблемы детского ревматизма внесли большой вклад отечественные педиатры В. И. Молчанов, А. А. Кисель, М. А, Скворцов, А. Б. Воловик, В. П. Бисярина, А. В. Долгополова и др. Эпидемиология, Установлена связь между началом заболевания и перенесенной стрептококковой инфекцией, в основном в ...
... агент в месте его внедрении. На МАС, как правило, накладывается ГАС, образованный развивающимися общими явлениями. Наоборот, ГАС вторично влияет на МАС с помощью нейрогуморальных механизмов (например, антивоспалительных гормонов). Шок (англ. shock – удар) – патологический процесс, возникающий при действии на организм сверхсильных патогенных раздражителей и характеризующийся фазным нарушением ...
... развития инфекционно-токсического шока, гиповолемического шока, острой дыхательной недостаточности, полиорганной недостаточности и обострением течения сопутствующих заболеваний. На догоспитальном этапе в оказании экстренной медицинской помощи чаще нуждаются больные с менигококковой инфекцией, острой кишечной инфекцией, тяжелыми и осложненными формами гриппа, дифтерией, малярией, ботулизмом, ...
... Патогенез. Избыточная выработка катехоламинов (адреналина,норадреналина). Симптомы. Характерны кризы с резким повышением АД в сочетании с нервно-психическими, эндокринно-обменными, желудочно-кишечными и гематологическими симптомами (пароксизмальная форма заболевания). Во время приступа клиника напоминает симптоматику симпатико-адреналового. криза: появляются чувство страха, беспокойство, дрожь, ...
0 комментариев