1. Решить задачу алгебраическим способом.

2. Предложить свое задание к задаче.

Следуя указанию учебника, учитель подво­дит учащихся к составлению уравнения, рас­суждая примерно так: "Обозначим буквой х - число тетрадей первого сорта, тогда тетрадей второго сорта будет (60 - х). Известно, что на те­традь первого сорта расходовали 8 листов, зна­чит, (8х) листов расходовали на тетради первого сорта. На тетрадь второго сорта расходовали 12 листов. Следовательно, на тетради второго сор­та израсходовано 12 (60-х) листов. Теперь мож­но найти, сколько всего листов израсходовано:

(8х + 12 (60-х), а это по условию равно 560. Со­ставим уравнение: 8х + 12 (60 - х) = 560. Ис­пользуя дистрибутивный закон (правило умно­жения числа на разность), дети записывают уравнение: 8х + 720 - 12х = 560.

И если составление уравнения не вызывает затруднений у учащихся, то при его решении возникают определенные трудности.

Действительно, действия с отрицательны­ми числами будут изучаться позднее, а реше­ние требует выполнения операций над ними.

Приведем образец решения уравнений.

8х+ 12 (60-х) =560

8х+720-12х=560

8х + 720 - 720 - 12х = 560 - 720 (из обеих частей уравнения вычли по 720)

8х- 12х =-160

(8 - 12)х = - 160 (применили дистрибутив­ный закон умножения относительно вычита­ния, вынесли неизвестное число х за скобки)

-4х=-160

х=(-160):(-4)

х=40

Итак, чтобы найти неизвестное число, нуж­но обе части уравнения разделить на (- 4), т.е. необходимо провести операции с отрицательны­ми числами, а понятие об отрицательном числе будет изучаться позднее.

Чтобы избежать этого, учитель может по­пытаться решить это уравнение следующим образом:

8х+ 12(60-х)=560

8х+720- 12х =560

8х+720+12х-12х=560+12х прибавим 12х

8х+720=560+ 12х

8х - 8х + 720 = 560 + 12х - 8х вычитаем из обеих частей 8х

720 = 560 + (12 - 8)х выносим за скобки х

720 - 560 = 560 - 560 + 4х вычитаем из обе­их частей 560

160=4х

х= 160:4

х=40

Согласитесь, что подобные рассуждения слишком громоздки и затруднительны. Зная это, учитель подводит учащихся к другому уравне­нию, решение которого легче и понятнее детям. Рассуждения примерно таковы: "Пусть х - число тетрадей второго сорта. Тогда (60-х) - число те­традей первого сорта. На тетради второго сорта пошло 12х листов, а на тетради первого -8 (60 - х) листов. На все тетради пошло 12х + 8 (60 - х) листов бумаги. По условию зада­чи это равно 560 листам". Составляем уравнение:

12х+8 (60-х) =560

12х+480-8х=560

12х-8х =560-480

(12-8)х=80

4х=80

х = 80 : 4

х=20

Ответ: 20 тетрадей второго сорта, 40 тет­радей первого сорта (60 - 20 = 40).

Рассуждения учителя и учащихся могут быть примерно такими: "Предположим, что все тетради были тетрадями первого сорта. Тог­да потребовалось бы 8 • 60 = 480 листов бумаги. Но в условии задачи сказано, что пошло 560 ли­стов, т.е. израсходовано больше, чем предполо­жили, на 80 листов (560 - 480 = 80) за счет того, что были тетради другого сорта, на которые шло по 12 листов. На одну тетрадь второго сорта рас­ходовали больше на 4 листа. Итак, на все тетра­ди второго сорта израсходовали на 80 листов больше, а на каждую тетрадь - на 4 листа боль­ше. Это значит, тетрадей второго сорта будет столько, сколько раз укладывается 4 в числе 80: 80:4 = 20 (тетрадей). Чтобы найти число те­традей первого сорта, нужно из 60 вычесть 20". Затем записывается решение задачи:

1)80-60=480

2) 560 - 480 = 80

3) 12-8=4

4) 80 : 4 = 20

5) 60 - 20 = 40

Второй арифметический способ решения основан на предположении, что все тетради были второго сорта.

Аналогичные рассуждения приводят к ре­шению:

1) 12 • 60 = 720 тетрадей

2) 720 - 560 = 160 тетрадей

3) 12-8 =4 тетради

4) 160 : 4 = 40 тетрадей

5) 60 - 40 = 20 тетрадей \

Ответ: 40 тетрадей первого сорта, 20 тет­радей второго сорта.

Возможны и другие способы решения за­дачи. Например:

1) 12.60=720

2)720-560= 160

3)12-8=4

4) 160:4=40

5) 8 • 40 = 320

6)560 - 320 = 240

7)240: 12=20

Задача №2

«На запасных путях стояло 2 железнодорожных состава. В первом составе было на 12 вагонов больше, чем во втором. Когда от каждого состава отцепили по 6 ва­гонов, в первом оказалось в 4 раза больше ваго­нов, чем во втором. Сколько вагонов было в каждом составе?»

К данной задаче даны три указания: 1) ре­шить задачу алгебраически; 2) найти среди ре­шенных раньше задач похожую на данную ре­шением; 3) составь свою задачу, которая будет иметь такое же решение.

При решении задачи алгебраическим спо­собом учащиеся обозначают буквой х - число вагонов в первом составе, тогда во втором со­ставе число вагонов (х - 12). В задаче сказано, что от каждого состава отцепили по 6 вагонов. Во втором составе ока­залось (х - 18) вагонов, а в первом (х - 6) ваго­нов. В первом составе в 4 раза больше вагонов, чем во втором.

Составим уравнение: х - 6 = 4 (х - 18). При решении уравнения у учащихся появляются затруднения, связанные с тем, что возникает необходимость в выполнении дейст­вий с отрицательными числами:

х - 6 = 4х- - 72

х - 4х = - 72 + 6

- 3х = - 66

х = (- 66): (- 3)

х=22

Чтобы избежать таких недоразумений, учитель предлагает на основе изученных свойств числовых равенств (вернее, равно­сильности уравнений) неизвестное перенести в правую часть уравнения:

х- 6=4 (х- 18)

х - 6 = 4х - 72

- 6 = 4х - х - 72

-6 =(4-1) х-72

- 6 = Зх - 72

- 6 + 72 = Зх

72 - 6 = Зх

66=3х

х=22

Как видим, решение уравнения вызывает затруднения у учащихся, и, предвидя это, учи­тель в процессе рассуждения подводит детей к уравнению, решение которого проще:

4 (х- 18)= х-6

4х - 72 = х - 6

4х-х-72=х-х-6

(4- 1) х-72 =-6

Зх = 72 - 6

х = 66 : 3

х = 22 (вагона в первом составе)

Ответ: в первом составе - 22 вагона, во втором - 10.

Обозначив буквой х число вагонов второго состава, в процессе рассуждении можно полу­чить уравнение:

4 (х - 6) = х + 6

4х - 24 = х + 6

Зх = 6 + 24

Зх=30

х= 10

Таким образом, можно с уверенностью ска­зать, что при решении задач алгебраическим способом учителю необходимо продумать, ка­кое неизвестное обозначить буквой, и подвес­ти учащихся к уравнению, решение которого будет проще и понятнее для них.

Выполнение второго задания, предложен­ное автором, для данной задачи сводится к отысканию (узнаванию) среди решенных по­хожей задачи, что отнимает много времени и недостаточно эффективно с точки зрения раз­вития умственных способностей.

Третье задание (составить задачу, похожую на данную) преследует такую же цель, как и второе.


Думается, в данном случае целесообразно решить задачу арифметическим способом. Для осознанного поиска решения задачи необходи­мо проиллюстрировать задачную ситуацию с помощью чертежа. Например, изобразить чис­ло вагонов второго состава отрезком АВ. От состава отцепили 6 вагонов (показываем на чертеже). Оставшееся число вагонов будет со­ответствовать отрезку СВ.

В задаче сказано, что вагонов осталось в пер­вом составе в 4 раза больше, чем во втором. Зна­чит, числу оставшихся вагонов первого состава будет соответствовать отрезок в 4 раза больше, чем отрезок СВ (показываем на чертеже отрезок ММ). Первоначально в первом составе было на 6 вагонов больше (показываем на чертеже). DN -отрезок, соответствующий 6 вагонам, тогда ОМ соответствует числу вагонов первого состава).

Рассматривая чертеж, необходимо обра­тить внимание детей на то, что отрезку КМ со­ответствует 12 вагонов. В задаче сказано "на 12 вагонов больше", и эти 12 вагонов прихо­дятся на три равные части, каждая из которых равна отрезку СВ (числу вагонов, оставшихся во втором составе).

После такой наглядной интерпретации за­дачи дети самостоятельно записывают реше­ние и поясняют каждое выполняемое действие:

1)4-1=3 (на 3 части больше осталось ва­гонов в первом составе)

2) 12 : 3 = 4 (вагона осталось во втором составе)

3) 4 + 6 = 10 (вагонов было во втором составе)

4) 10 + 12 = 22 (вагона было в первом составе)

При сравнении способов решения учащие­ся приходят к выводу, что арифметический способ легче и понятнее, чем алгебраический.

Интересным для учащихся будет и реше­ние данной задачи методом перебора.

Прежде всего определим, с какого числа можно (да и нужно) начинать подбор чисел. В задаче сказано, что от каждого состава отцепи­ли по 6 вагонов и при этом вагоны еще оста­лись. Значит, вагонов в составе было больше шести. В задаче также сказано, что в первом составе осталось вагонов в 4 раза больше, чем во втором. Значит, осталось четное число ваго­нов (любое число, умноженное на четное, есть число четное). Если отцепили 6 вагонов (а 6 -число четное), значит, вначале было тоже чет­ное число вагонов (сумма двух четных чисел есть число четное). Во втором составе на 12 вагонов меньше, а это значит, что и во втором составе четное число вагонов. Итак, для пробы будем брать следующие числа: 8, 10, 12 и т.д.

Пусть во втором составе было 8 вагонов, тог­да в первом их было 20 (8 + 12 = 20). Когда от каждого состава отцепили по 6 вагонов, в первом оказалось 14(20-6=14), а во втором-2 (8 - 6 = 2). Проверяем, во сколько раз 14 боль­ше, чем 2(14:2=7)-в7 раз. Это не соответст­вует условию задачи, так как число оставшихся вагонов первого состава должно быть в 4 раза больше, чем число вагонов второго состава. Пусть 10 число вагонов второго состава. Тогда число вагонов первого состава 22 (10 + 12 = 22).

От каждого отцепили по 6 вагонов: во втором ос­талось 4, в первом - 16 (10 - 6 = 4, 22 - 6 = 16). Проверяем, во сколько раз больше осталось ваго­нов в первом составе, чем во втором, и получаем 4(16:4=4), что соответствует условию задачи.

Ответ: в первом составе было 22 вагона, во вто­ром — 10.


Заключение.

Решение текстовых задач и нахождение разных способов их решения на уроках математики способствуют развитию у детей мышления, памяти, внимания, творческого воображения, наблюдательности, последовательности рассуждения и его доказательности; для развития умения кратко, четко и правильно излагать свои мысли.

Решение задач разными способами, получение из нее новых, более сложных задач и их решение в сравнении с решением исходной задачи создает предпосылки для формирования у ученика умения находить свой «оригинальный» способ решения задачи, воспитывает стремление вести «самостоятельно поиск решения новой задачи», той, которая раньше ему не встречалась.

Задачи с многоспособовыми решениями весьма полезны так же для внеклассных занятий, так как при этом открываются возможности по настоящему дифференцировать результаты каждого участника.

Такие задачи могут с успехом использоваться в качестве дополнительных индивидуальных знаний для тех учеников, которые легко и быстро справляются с задачей на уроке, или для желающих в качестве дополнительных домашний заданий.


Список используемой литературы.

1.  Бантова М.А. Решение текстовых арифметических задач. Журнал «Начальная школа» №10-11 1989г. МОСКВА. “Просвещение”.

2.  Баринова О.В. Дифференцированное обучение решению математических задач. Журнал «Начальная школа» №2 1999г. МОСКВА. “Просвещение”.

3.  Вялова С. Как составить и решить задачу. Газета «Начальная школа» №16, №19 1998г. МОСКВА.

4.  Гребенникова Н.А. Ознакомление первоклассников с задачей. . Журнал «Начальная школа» №10 1990г. МОСКВА. “Просвещение”.

5.  Гребенникова Н.Л. Решение задач на зависимость величин разными способами. Журнал «Начальная школа» №2 1999г. МОСКВА. “Просвещение”.

6.  Захарова Н.М. Простые задачи в системе УДЕ. Журнал «Начальная школа» №3 1997г. МОСКВА. “Просвещение”.

7.  Клименченко Д. Задачи с многовариантными решениями. Журнал «Начальная школа» №6 1991г. МОСКВА. “Просвещение”.

8.  Мельник Н.В. Развитие логического мышления при изучении математики. Журнал «Начальная школа» №5 1997г. МОСКВА. “Просвещение”.

9.  Мельникова Т.С. Таблицы по математике. Журнал «Начальная школа» №1 1990г. МОСКВА. “Просвещение”.

10.      Моро М.И. Методические указания к демонстрационному материалу по математике. МОСКВА. “Просвещение”. №2 1999г.

11.      Семья Ф. Совершенствование работы над составными задачами. Журнал «Начальная школа» №5 1991г. МОСКВА. “Просвещение”.

12.      Солнышко Г.М. Как научить ребенка самостоятельно решать задачи. Газета «Начальная школа» №21 1998г. МОСКВА.

13.      Стойлова Л.П. Основы начального курса математики. №2 1999г. МОСКВА. “Просвещение”.

14.      Целищева И.И. Моделирование в процессе решения текстовых задач. Журнал «Начальная школа» №3 1996г. МОСКВА. “Просвещение”.

15.      Шадрина И.В. Использование графических схем при работе над текстовой задачей. Журнал «Начальная школа» №3 1995г. МОСКВА. “Просвещение”.

16.      Шикова Р.Н. Работа над текстовыми задачами. Журнал «Начальная школа» №5 1991г. МОСКВА. “Просвещение”.

17.      Шикова Р.Н. Особенности работы над задачами по системе развивающего обучения Л.В. Занкова. Журнал «Начальная школа» №4 1999г. МОСКВА. “Просвещение”.

18.      Шульга Р.П. Решение текстовых задач разными способами – средство повышения интереса к математике. Журнал «Начальная школа» №12 1990г. МОСКВА. “Просвещение”.


Приложение 1.

 

Памятка В задаче дано (говорится, что…)…

Спрашивается…

Рассуждаю (ребенок может выбрать способ рассуждения сам):

а) от данных к искомой величине (перфокарта 1);

б) от искомого к данным (перфокарта 2);

Решаю.

Проверяю.


Приложение 2.

Перфокарта №1

1.  Зная, что красных шаров 7, а синих – на 3 больше.

2.  Я могу узнать: синие шары – 7+3.

3.  А чтобы узнать количество синих и красных шаров вместе, надо к красным шарам (7 штук) прибавить синие (10 штук). 7+10=17

4.  Проверяю: 17-7=10, 10-7=3

 

Перфокарта №2

1.  Для ответа на вопрос надо знать:

а) количество красных шаров.

б) количество синих шаров.

2.  В задаче известно: красных шаров – 7 штук.

Неизвестно: количество красных шаров.

Но сказано, что их на 3 штуки больше (7+3).

3.  Значит, сначала узнаю количество синих шаров:

7+3=10 шт.

Затем узнаю количество красных и синих шаров вместе: 7+10=17 шт.

4.  Проверяю: 17-7=10, 10-7=3

 

 

 

 


Приложение 3.

Схемы-формулы, используемые при решении задач по системе Д.Б. Эльконина – В.В. Давыдова.

Больше на … больше в … раз

А
 
А
 
х=А+В у=АхВ
х
 
К раз
 


меньше на … меньше в … раз

х=М-К у=М:К



Приложение 4.

 

Виды кратких записей задач.

грибов.
 
5
 
У Саши
 
Карточка №1. Задачи на нахождение суммы.
У Маши
 
2
 
гриба.
 
Сколько …… ?
 

Карточка №2. Задачи на увеличение или уменьшение числа на несколько единиц.

У Нины
 
4
 
пера.
 
У Миши
 
?
 
2
 
пера
 
больше.
 
Сколько …… ?
 

Карточка №3. Задачи на нахождение остатка.

Было
 
4
 
василька
 
Отдали
 
2
 
василька
 
Стало
 
?
 


Приложение 5.

При решении задач на цену, количество и стоимость можно использовать данную схему:

 

 



При решении задач на движение можно использовать следующую схему (запомним, что латинской буквой “S” обозначается расстояние, буквой “t” – время, буквой “v” – скорость):

 



Приложение 6.


1. На каждой из двух полок было по 3 книги. Когда несколько книг добавили на вторую полку, то на ней стало 9 книг. Сколько книг добавили на вторую полку?

2. На первой полке было 3 книги, на второй – 9 книг. Во сколько раз уменьшили число книг на второй полке, если их стало столько же, сколько и на первой?

3. На двух полках книг было поровну. Когда число книг на второй полке увеличили в 3 раза, то их на второй полке стало 9, сколько книг сначала было на каждой полке?

4. На двух полках книг было поровну. Когда на вторую полку поставили еще 6 книг, то на второй полке стало 9 книг. Сколько книг было сначала на каждой полке?

5. На первой полке было 3 книги, на второй полке – 9 книг. Когда взяли несколько книг со второй полки, то их стало столько же, сколько на первой. Сколько книг взяли на второй полке?

Ниже приведены рисунки к задачам. Сопоставьте каждой задаче соответствующий рисунок.



Рис. 1.


Рис. 2.

Рис. 3.


Рис. 4.

3

 

9

 

Рис. 5.

Во сколько раз уменьшили…?


Приложение 7.

Порядок работы с задачей.


УСЛОВИЕ

ЗАДАЧА РЕШЕНИЕ ПРОВЕРКА ОТВЕТ

ВОПРОС



Приложение 8.

Задача №1:

Рабочему поручено изготовить 30 деталей за 10 ч. Но рабочий, экономя время, успевал делать одну деталь за 15 мин. Сколько деталей сверх задания сделал рабочий за счет сэкономленного времени? (При решении 10 ч заменить минутами.)

Дополнительные задания:

1.  Найдите два способа решения задачи.

2.  Объясните, как рассуждал ученик, который решил эту задачу таким способом:

I способ

10 ч = 600 мин

1)  600:15=40 – деталей

2)  40-30=10 – деталей

II способ

1)  600:30=20 – минут

2)  20-15=5 – минут

3)  5·30=150 – минут

4)  150:15=10 – деталей

3. Решите эту задачу другими способами, отвечая на поставленные вопросы:

III способ

1)  Сколько деталей стал делать рабочий за 1 ч?

2)  Сколько деталей сделал рабочий за 10 ч?

3)  Сколько деталей сделал рабочий сверх задания?

IV способ

1)    Сколько минут должен был тратить рабочий на изготовление одной детали?

2)    Сколько деталей сделал рабочий за 1 ч сначала?

3)    Сколько деталей он стал делать потом?

4)    На сколько больше деталей стал делать рабочий за 1 ч?

5)    Сколько деталей сделал рабочий сверх задания?

4. Так как эта задача допускает еще и другой способ решения:

1)  15·30=450 – минут затратил рабочий на изготовление 30 деталей, расходуя на каждую по 15 мин.

2)  600-450=150 – минут осталось у рабочего на изготовление дополнительных деталей.

3)  150:15=10 – деталей сделал рабочий сверх задания, то можно предложить детям найти этот способ решения задачи.

Задачи, воспитывающие гибкость мышления, когда по одному действию требуется восстановить весь дальнейший ход рассуждения.

Задача №2:

Нужно привезти 540 т угля на трех машинах. За сколько дней это можно сделать, если на каждую грузить по 3 т и делать по 5 поездок в день?

Дополнительные задания:

1. Эту задачу можно решить разными способами. Закончите решение задачи другими способами:

I способ

1)  3·5=15 – тонн перевезет одна машина в день.

2)  …

3)  …

II способ

1)  3·3=9 – перевезут три машины за одну перевозку.

2)  …

III способ

1)  540:3=180 – тонн нужно перевезти каждой машине.

2)  …

3)  …

2. Найдите еще другие способы решения этой задачи (их не менее 12).


Информация о работе «Педагогика в начальных классах»
Раздел: Педагогика
Количество знаков с пробелами: 107930
Количество таблиц: 11
Количество изображений: 0

Похожие работы

Скачать
125231
6
0

... разработанной программы кружка «Юный эколог», способствует значительному повышению экологической культуры школьников. Подготовка дипломной работы убедила меня в большой важности разработки специальной программы, направленной на повышение экологической культуры учащихся начальных классов сельских школ.Литература. Артамонов В.И. Редкие и исчезающие растения. – М.: Агропромидат, 1989. – 383с. ...

Скачать
156811
9
1

... ценностных приоритетов в определении целей и содержания, форм и методов построения учебной деятельности учащихся. Одно из направлений методического обновления уроков в начальных классах – конструирование интегрированных уроков и проведение их на основе интеграции учебного материала с нескольких предметов, объединённого вокруг одной темы. Это междисциплинарная форма учебного процесса, которая ...

Скачать
111831
8
5

... . - № 10. – С. 26-28. 13.  Дроздова Ю.Л. Игра на уроках // Начальная школа Казахстана. – 2003. - № 7. – С. 13-17. 14.  Аржановская Н.В. Урок-путешествие по русскому языку: II класс // Начальная школа. – 2003. - № 8. – С. 43. 15.  Мартынова О.А. Применение технологии УДЕ на уроках русского языка Начальная школа. – 2001. - № 5. – С. 90-94. 16.  Кульневич С.В. Не совсем обычный урок: Практическое ...

Скачать
125643
0
0

... сердцем гражданина. В. Г. Белинский возводил в ранг «основного закона нравственности» стремление человека к совершенству и достижение блаженства сообразно долгу. Нравственная культура личности - это характеристика нравственного развития личности, в которой отражается степень освоения ею морального опыта общества, способность последовательного осуществления в поведении и отношениях с другими людьми ...

0 комментариев


Наверх