10 баллов – очень высокий уровень,

4,8 – 8,0 баллов – высокий уровень,

1,5 – 3,5 баллов – средний уровень,

0,8 баллов – низкий уровень.

Из таблицы видно, что большая часть детей (5 человек) имеет средний уровень наглядно-действенного мышления, 3 человека имеет высокий уровень развития и 2 человека – низкий уровень.

Методика 2 . "Матрица Равена"

Эта методика предназначена для оценивания наглядно-образного мышления у младшего школьника. Здесь под наглядно-образным мышлением понимается такое , которое связано с оперированием различными образами и наглядными представлениями при решении задач.

Конкретные задания, используемые для проверки уровня развития наглядно-образного мышления, в данной методике взяты из известного теста Равена. они представляют собой специальным образом подобранную выборку из 10 постепенно усложняющихся матриц Равена. (см. Приложение №1).

Ребенку предлагается серия из десяти постепенно усложняющихся задач одинакового типа: на поиск закономерностей в расположении десяти деталей на матрице и подбор одного из восьми данных ниже рисунков в качестве недостающей вставки к этой матрице, соответствующей ее рисунку. Изучив структуру большой матрицы, ребенок должен указать ту из деталей, которая лучше всего подходит к этой матрице, т. е. соответствует ее рисунку или логике расположения ее деталей по вертикали и по горизонтали.

На выполнение всех десяти заданий ребенку отводится 10 минут. По истечении этого времени эксперимент прекращается и определяется количество правильно решенных матриц, а также общая сумма баллов, набранных ребенком за их решение. Каждая правильно решенная матрица оценивается в 1 балл.

Ниже показан пример матрицы:

Результаты выполнения детьми методики представлены в следующей таблице:

№ п\п

Ф. И. учащегося

Задание

Правильно решенных задач (баллы)

1

2

3

4

5

6

7

8

9

10

1

Кушнерев

Александр

+ + - - + + - + + - 6
2 Данилина Дарья + - - - + + + + - - 5
3

Кирпичев

Алексей

- + + + - - + + + - 6
4 Мирошников Валерий + - + - + + - + - + 6
5 Еременко Марина - - + + - + + + - - 5
6 Сулейманов Ренат + + + + + - + + + - 8
7 Тихонов Денис + + + - + + + - - + 7
8 Черкашин Сергей + - - - + - - + - - 3
9 Тенизбаев Никита + + + - + + + - + + 8
10 Питимко Артем - + - - - + + - - - 3

Выводы об уровне развития:

10 баллов – очень высокий;

8 – 9 баллов – высокий;

4 – 7 баллов – средний;

2 – 3 балла – низкий;

0 – 1 балл – очень низкий.

Как видно из таблицы 2 ребенка имеют высокий уровень развития наглядно-образного мышления, 6 детей – средний уровень развития и 2 ребенка – низкий уровень развития.

Методика 3. "Лабиринт (А. Л. Венгера).

Целью данной методики является определение уровня развития наглядно-образного мышления детей младшего школьного возраста.

Ребенку нужно найти путь к определенному домику среди других, неверных, путей и тупиков лабиринта. В этом ему помогают образно заданные указания – мимо каких объектов (деревьев, кустов, цветов, грибов) он пройдет. ребенок должен ориентироваться в самом лабиринте и схеме. отражающей последовательность этапов пути. Одновременно методику "Лабиринт" целесообразно использовать в качестве упражнений для развития наглядно-образного и наглядно-действенного мышления (см. Приложение №2).

Оценка результата:

Количество баллов, получаемых ребенком, устанавливается по шкале оценок (см. Приложение №2).

После проведения методики получили следующие результаты:

2 ребенка имеют высокий уровень развития наглядно-образного мышления;

6 детей – средний уровень развития;

2 ребенка – низкий уровень развития.

Таким образом, при проведении предварительного эксперимента группа учащихся (10 человек) показала следующие результаты:

60% детей имеет средний уровень развития наглядно-действенного и наглядно-образного мышления;

20% - высокий уровень развития и

20% - низкий уровень развития.

Результаты диагностики можно представить в виде диаграммы:

3.2. Особенности использования интегрированных уроков по математике и трудовому обучению при развитии наглядно-действенного и наглядно-образного мышления младших школьников.

 

На основе предварительного эксперимента мы определили, что у детей недостаточно развито наглядно-действенное и наглядно-образное мышления. для более высокого уровня развития этих видов мышления были проведены интегрированные уроки математики и трудового обучения. уроки проводились по программе "Математика и конструирование", авторами которой являются С. И. Волкова и О. Л. Пчелкина. (см. Приложение №3).

Приведем фрагменты уроков, которые способствовали развитию наглядно-действенного и наглядно-образного мышления.

Тема: Знакомство с треугольником. Построение треугольников. Виды треугольников.

Этот урок направлен на развитие умения анализировать, творческого воображения, наглядно-действенного и наглядно-образного мышления; научить в результате практических упражнений строить треугольник.

Фрагмент 1.

Соедините точку 1 с точкой 2, точку 2 с точкой , точку 3 с точкой 1.

-     Что это такое? – спросил Циркуль.

-     Да это же ломаная линия! – воскликнула точка.

-     А сколько в ней отрезков, ребята?

-     А углов?

-     Ну, вот это и есть треугольник.

После знакомства детей с видами треугольника (остроугольный, прямоугольный, тупоугольный) были заданы следующие задания:

1)   Обведите вершину прямого угла треугольника красным карандашом, тупого угла – синим, острого – зеленым. Закрась прямоугольный треугольник.

2)   Закрась остроугольные треугольники.

3)   Найдите и отметьте прямые углы. Посчитайте и запишите сколько прямоугольных треугольников изображено на чертеже.

Тема: Знакомство с четырехугольником. Виды четырехугольников. Построение четырехугольников.

Этот урок направлен на развитие всех видов мышления, пространственное воображение.

Приведу примеры заданий на развитие наглядно-действенного и наглядно-образного мышления.

Фрагмент 2.

I. Повторение.

а) повторение об углах.

Возьмите лист бумаги. Произвольно согните его. разверните. получили прямую линию. Теперь согните лист по-другому. Посмотрите на углы, которые получили без линейки и карандаша. Назовите их.

Согните из проволоки:

После знакомства с четырехугольником и его видами, были предложены следующие задания:

1)

Сколько квадратов?

2) Сосчитайте прямоугольники.

4)   Найдите 9 квадратов.

Фрагмент 3.

Для выполнения практической работы было предложено такое задание:

Скопируйте данный четырехугольник, вырежи его, проведи диагонали. Разрежьте четырехугольник на два треугольника по той диагонали, которая длиннее и выложи из полученных треугольников такие фигуры, как показаны ниже.

Тема: Повторение знаний о квадрате. Знакомство с игрой "Танграм", конструирование из его частей.

Этот урок направлен на активацию познавательной деятельности через решение логических задач, развитие наглядно-образного и наглядно-действенного мышления, внимания, воображения, стимулирование активного творческого труда.

Фрагмент 4.

II. Устный счет.

- Урок начнем с небольшой экскурсии в "геометрический лес".

Дети, мы с вами попали в необычный лес. Чтобы в нем не заблудиться, надо назвать геометрические фигуры, которые "спрятались" в этом лесу. Назовите геометрические фигуры, какие вы здесь видите.

Задание на повторение понятия прямоугольника.

- Найдите соответствующие пары, чтобы при их сложении получалось три прямоугольника.

На этом уроке использовалась игра "Танграм" – математический конструктор. она способствует развитию рассматриваемых нами видов мышления, творческой инициативы, смекалки (см. приложение №4).

Для составления плоскостных фигур по образу необходимо не только знание названия геометрических фигур, их свойств и отличительных признаков, но и умение представить, вообразить, что получится в результате соединения нескольких фигур, зрительно расчленить образец, представленный контуром или силуэтом, на составляющие его части.

Обучение детей игре "Танграм" проводилось в четыре этапа.

1 этап. Ознакомление детей с игрой: сообщение названия, рассматривание отдельных частей, уточнение их названия, соотношение частей по размерам, усвоение способов соединения их между собой.

2 этап. Составление сюжетных фигур по элементарному изображению предмета.

Составление предметных фигур по элементарному изображению состоит в механическом подборе, копировании способа расположения частей игры. Необходимо внимательно рассмотреть образец, назвать составные части, их расположение и соединение.


Информация о работе «Развитие наглядно-действенного и наглядно-образного мышления младших школьников»
Раздел: Педагогика
Количество знаков с пробелами: 95316
Количество таблиц: 5
Количество изображений: 0

Похожие работы

Скачать
40434
2
0

... находить различные пути и способы решения часто приносит успех и удовлетворяет как частные так и глобальные интересы. Анализ школьных программ по математике дает возможность расставить основные вехи развития творческого мышления школьников, поскольку овладение таким максимально абстрактным предметом, как математика, хорошо показывает, до какого максимума поднимается мышление школьников ...

Скачать
154462
7
7

... и внешне – своим открытым поведением, а внутренне – своим психическими процессами и чувствами. Выводы по первому разделу Для развития всех познавательных процессов младшего школьника необходимо соблюдать следующие условия: 1.      Учебная деятельность должна быть целенаправленной, вызывать и поддерживать постоянный интерес у учащихся; 2.      Расширять и развивать познавательные интересы у ...

Скачать
49037
2
3

... всему тесту в целом, что говорит о том, что у них уровни развития мыслительных операций сравнения и обобщения выше, чем у слабоуспевающих школьников. Если анализировать индивидуальные данные по субтестам, то затруднения при ответах на отдельные вопросы говорят о слабом владении данными логическими операциями. Данные затруднения наиболее часто встречаются именно у слабоуспевающих школьников. Это ...

Скачать
32575
2
0

... младшего школьника. Объект исследования: развитие образного мышления у учащихся 2 класса средней школы №1025. Метод: тестирование.   Глава 1. Теоретические основы исследования образного мышления   1.1.     Понятие о мышлении Наше познание окружающей действительности начинается с ощущений и восприятия и переходит к мышлению. Функция мышления – расширение границ познания путем выхода за ...

0 комментариев


Наверх