МІНІСТЕРСТВО НАУКИ І ОСВІТИ УКРАЇНИ
Херсонський Державний Педагогічний Університет
Фізико-математичний факультет
Кафедра інформаційних технологій
Швидкі алгоритми сортування
Курсова робота
Виконавець
Керівник
Херсон 2001
Зміст
Вступ...................................................................................................... 3
1. Аналіз швидких алгоритмів сортування................... 6
1.1. Сортування деревом........................................................................ 6
1.2. Пірамідальне сортування................................................................ 9
1.3 Швидке сортування Хоара.............................................................. 12
1.4 Метод цифрового сортування........................................................ 14
2. Практична реалізація мовою Паскаль швидких алгоритмів сортування...................................................................................... 16
Висновки........................................................................................... 22
Список використаних джерел............................................ 24
ВступВ наш час нові інформаційні технології посідають дуже важливе місце не лише в спеціалізованих, але й в повсякденних сферах життя. Комп’ютери застосовуються в бізнесі, менеджменті, торгівлі, навчанні та багатьох інших сферах діяльності людини.
Комп’ютерні технології дуже зручні для виконання різноманітних операцій, але в різних сферах застосування ці операції різні. Тому, кожна окрема галузь, яка використовує специфічні технічні засоби, потребує своїх власних програм, які забезпечують роботу комп’ютерів.
Розробкою програмного забезпечення займається така галузь науки, як програмування. Вона набуває все більшого й більшого значення останнім часом, адже з кожним днем комп’ютер стає все більш необхідним, все більш повсякденним явищем нашого життя. Адже обчислювальна техніка минулих років вже майже повністю вичерпала себе і не задовольняє тим потребам, що постають перед людством.
Таким чином, нові інформаційні технології дуже актуальні в наш час і потребують багато уваги для подальшої розробки та вдосконалення. Поряд з цим, велике значення має також і програмування, яке є одним із фундаментальних розділів інформатики і тому не може залишатись осторонь.
Програмування містить цілу низку важливих внутрішніх задач. Однією з найбільш важливих таких задач для програмування є задача сортування. Під сортуванням звичайно розуміють перестановки елементів будь-якої послідовності у визначеному порядку. Ця задача є однією з найважливіших тому, що її метою є полегшення подальшої обробки певних даних і, насамперед, задачі пошуку. Так, одним з ефективних алгоритмів пошуку є бінарний пошук. Він працює швидше ніж, наприклад, лінійний пошук, але його можливо застосовувати лише за умови, що послідовність вже упорядкована, тобто відсортована.
Взагалі, відомо, що в будь-якій сфері діяльності, що використовує комп’ютер для запису, обробки та збереження інформації, усі дані зберігаються в базах даних, які також потребують сортування. Певна впорядкованість для них дуже важлива, адже користувачеві набагато легше працювати з даними, що мають певний порядок. Так, можна розташувати всі товари по назві або відомості про співробітників чи студентів за прізвищем або роком народження, тощо.
Задача сортування в програмуванні не вирішена повністю. Адже, хоча й існує велика кількість алгоритмів сортування, все ж таки метою програмування є не лише розробка алгоритмів сортування елементів, але й розробка саме ефективних алгоритмів сортування. Ми знаємо, що одну й ту саму задачу можна вирішити за допомогою різних алгоритмів і кожен раз зміна алгоритму приводить до нових, більш або менш ефективних розв’язків задачі. Основними вимогами до ефективності алгоритмів сортування є перш за все ефективність за часом та економне використання пам’яті. Згідно цих вимог, прості алгоритми сортування (такі, як сортування вибором і сортування включенням) не є дуже ефективними.
Алгоритм сортування обмінами, хоча і завершує свою роботу (оскільки він використовує лише цикли з параметром і в тілі циклів параметри примусово не змінюються) і не використовує допоміжної пам’яті, але займає багато часу. Навіть, якщо внутрішній цикл не містить жодної перестановки, то дії будуть повторюватись до тих пір, поки не завершиться зовнішній цикл.
Алгоритм сортування вибором ефективніше сортування обмінами за критерієм М(n), тобто за кількістю пересилань, але також є не дуже ефективним. З цих причин було розроблено деякі нові алгоритми сортування, що отримали назву швидких алгоритмів сортування. Це такі алгоритми, як сортування деревом, пірамідальне сортування, швидке сортування Хоара та метод цифрового сортування.
Метою нашої дослідницької роботи є ознайомлення з цими швидкими алгоритмами сортування, спроба проаналізувати їх і висвітлити кожен з них і написати програму, яка б виконувала сортування деякої послідовності за допомогою різних швидких алгоритмів сортування.
1. Аналіз швидких алгоритмів сортування 1.1. Сортування деревомАлгоритм сортування деревом ТreeSort власне кажучи є поліпшенням алгоритму сортування вибором. Процедура вибору найменшого елемента удосконалена як процедура побудови т.зв. сортуючого дерева. Сортуюче дерево - це структура даних, у якій представлений процес пошуку найменшого елемента методом попарного порівняння елементів, що стоять поруч. Алгоритм сортує масив у два етапи.
· I етап : побудова сортуючого дерева;
· II етап : просівання елементів по сортуючому дереву.
Розглянемо приклад: Нехай масив A складається з 8 елементів (мал. 1, 1-а рядок). Другий рядок складається з мінімумів елементів першого рядка, які стоять поруч. Кожний наступний рядок складений з мінімумів елементів, що стоять поруч, попереднього рядка.
|
Ця структура даних називається сортуючим деревом. У корені сортуючого дерева розташований найменший елемент. Крім того, у дереві побудовані шляхи елементів масиву від листів до відповідного величині елемента вузла - розгалуження. (На мал.1 шлях мінімального елемента a5 - від листа a5 до кореня відзначений товстою лінією.)
Коли дерево побудоване, починається етап просівання елементів масиву по дереву. Мінімальний елемент пересилається у вихідний масив B і усі входження цього елемента в дереві заміняються на спеціальний символ M.
| |||||
| |||||
a6 = min(M, a6)
a6 = min(a6, a8)
a3 = min(a3, a6)
b2 := a3
Просівання елементів відбувається доти, поки весь вихідний масив не буде заповнений символами M, тобто n раз:
For I := 1 to n do begin
Відзначити шлях від кореня до листка символом M;
Просіяти елемент уздовж відзначеного шляху;
B[I] := корінь дерева
end;
Обґрунтування правильності алгоритму очевидно, оскільки кожне чергове просівання викидає в масив У найменший з елементів масиву А, що залишилися.
Сортуюче дерево можна реалізувати, використовуючи або двовимірний масив, або одномірний масиві ST[1..N], де N = 2n-1 (див. наступний розділ). Оцінимо складність алгоритму в термінах M(n), C(n). Насамперед відзначимо, що алгоритм TreeSort працює однаково на усіх входах, так що його складність у гіршому випадку збігається зі складністю в середньому.
Припустимо, що n - ступінь 2 (n = 2l). Тоді сортуюче дерево має l + 1 рівень (глибину l). Побудова рівня I вимагає n / 2I порівнянь і пересилань. Таким чином, I-ий етап має складність:
C1(n) = n/2+n/4+ ... + 2+1 = n-1, M1(n) = C1(n) = n - 1
Для того, щоб оцінити складність II-го етапу З2(n) і M2(n) помітимо, що кожен шлях просівання має довжину l, тому кількість порівнянь і пересилань при просіванні одного елемента пропорційно l. Таким чином, M2(n) = O(l n), C2(n) = O(l n).
Оскільки l = log2n, M2(n)=O(n log2 n)), C2(n)=O(n log2 n), Але З(n) = C1(n) + C2(n), M(n) = M1(n) + M2(n). Тому що C1(n) < C2(n), M1(n) < M2(n), остаточно одержуємо оцінки складності алгоритму TreeSort за часом:
M(n) = O(n log2 n), C(n) = O(n log2 n),
У загальному випадку, коли n не є ступенем 2, сортуюче дерево будується трохи інакше. “Зайвий” елемент (елемент, для якого немає пари) переноситься на наступний рівень. Легко бачити, що при цьому глибина сортуючого дерева дорівнює [log2 n] + 1. Удосконалення алгоритму II етапу очевидно. Оцінки при цьому змінюють лише мультиплікативні множники. Алгоритм TreeSort має істотний недолік: для нього потрібно додаткова пам'ять розміру 2n - 1.
1.2. Пірамідальне сортування
Алгоритм пірамідального сортування HeapSort також використовує представлення масиву у виді дерева. Цей алгоритм не вимагає допоміжних масивів, сортуючи “на місці”. Розглянемо спочатку метод представлення масиву у виді дерева:
Нехай A[1 .. n] - деякий масив. Зіставимо йому дерево, використовуючи наступні правила:
1.A[1] - корінь дерева ;
2.Якщо A[i] - вузол дерева і 2i £ n,
то A[2*i] - вузол - “лівий син” вузла A[i]
3.Якщо A[i] - вузол дерева і 2i + 1 £ n,
то A[2*i+1] - вузол - “правий син” вузла A[i]
Правила 1-3 визначають у масиві структуру дерева, причому глибина дерева не перевершує [log2 n] + 1. Вони ж задають спосіб руху по дереву від кореня до листків. Рух вгору задається правилом 4:
4.Якщо A[i] - вузол дерева і i > 1,
то A[i mod 2] - вузол - “батько” вузла A[i];
Зверніть увагу на те, що всі рівні дерева, за винятком останнього, цілком заповнені, останній рівень заповнений ліворуч і індексація елементів масиву здійснюється вниз і праворуч. Тому дерево упорядкованого масиву відповідає наступним властивостям:
A[i] ( A[2*i], A[i] ( A[2*i+1], A[2*i] ( A[2*i+1].
Як це не дивно, алгоритм HeapSort спочатку будує дерево, що відповідає прямо протилежним співвідношенням:
A[i] ³ A[2*i], A[i] ³ A[2*i+1]
а потім змінює місцями A[1] (найбільший елемент) і A[n].
Як і TreeSort, алгоритм HeapSort працює в два етапи:
I. Побудова сортуючого дерева;
II. Просівання елементів по сортуючому дереву.
Дерево, що представляє масив, називається сортуючим, якщо виконуються умови (6). Якщо для деякого i ця умова не виконується, будемо говорити, що має місце (сімейний) конфлікт у трикутнику i.
Як на I-ом, так і на II-ому етапах елементарна дія алгоритму полягає в вирішенні сімейного конфлікту: якщо найбільший із синів більше, ніж батько, то переставляються батько і цей син (процедура ConSwap).
У результаті перестановки може виникнути новий конфлікт у тому трикутнику, куди переставлений батько. У такий спосіб можна говорити про конфлікт (роду) у піддереві з коренем у вершині i. Конфлікт роду вирішується послідовним вирішенням сімейних конфліктів проходом по дереву вниз. (На мал шлях вирішення конфлікту роду у вершині 2 відзначений). Конфлікт роду вирішено, якщо прохід закінчився (i > n div 2), або ж в результаті перестановки не виник новий сімейний конфлікт (процедура Conflict).
Procedure ConSwap(i, j : Integer);
Var b : Real;
Begin
If a[i] < a[j] then begin
b := a[i]; a[i] := a[j]; a[j] := b
end
End;
Procedure Conflict(i, k : Integer);
Var j : Integer;
Begin
j := 2*i;
If j = k
then ConSwap(i, j)
else if j < k then begin
if a[j+1] > a[j] then j := j + 1;
ConSwap(i, j); Conflict(j, k)
end
End;
I етап – побудова сортуючого дерева - оформимо у виді рекурсивної процедури, використовуючи визначення:
Якщо ліве і праве піддерева T(2i) і T(2i+1) дерева T(i) є сортуючими, то для перебудови T(i) необхідно вирішити конфлікт роду в цьому дереві.
Procedure SortTree(i : Integer);
begin
If i <= n div 2 then begin
SortTree(2*i); SortTree(2*i+1); Conflict(i, n)
end
end;
На II-ом етапі - етапі просівання - для k від n до 2 повторюються наступні дії:
1.Переставити A[1] і A[k];
2.Побудувати сортуюче дерево початкового відрізка масиву A[1..k-1], усунувши конфлікт роду в корені A[1]. Відзначимо, що 2-а дія вимагає введення в процедуру Conflict параметра k.
Program HeapSort;
Const n = 100;
Var A : Array[1..n] of real;
k : Integer;
{процедури ConSwap, Conflict, SortTree, введення, виведення}
Begin
{ введення }
SortTree(1);
For k := n downto 2 do begin
ConSwap(k, 1); Conflict(1, k - 1)
end;
{ виведення }
End.
Нескладно підрахувати, що С(n) = O( n log2 n ), М(n) = O( n log2 n )
1.3 Швидке сортування ХоараУдосконаливши метод сортування, який грунтується на обмінах, К. Хоар запропонував алгоритм QuickSort сортування масивів, що дає на практиці відмінні результати і дуже просто програмується. Автор назвав свій алгоритм швидким сортуванням.
Ідея К. Хоара полягає в наступному:
... не повторяются. Простой путь – путь, в котором дуги не повторяются. Маршрут – последовательность ребер, составляющих, как и путь, цепочку. Длина пути взвешенного графа определяется как сумма весов – его дуг. Если граф не взвешен, то можно считать веса дуг равными 1. Кратчайшим путем между выделенной парой вершин хн и хк называется путь, имеющий наименьшую длину среди всех возможных путей между ...
... 6) + 1 =(509 mod 6) + 1 = 5 + 1=6; Алгоритм на графах: поиск кратчайшего пути. 3) (Y mod 5) + 1 =(509 mod 5) +1 =4 + 1 = 5; Алгоритм сортировки: сортировка-шейкер. 2 АЛГОРИТМ СОРТИРОВКИ: СОРТИРОВКА ШЕЙКЕР 2.1 Математическое описание задачи Сортировка – это перестановка элементов некоторого множества в заданном порядке при некоторой упорядочивающей функцию. Сортировка используется для ...
... , меняющую местами пару элементов; - собственно сортирующий алгоритм, который осуществляет сравнение и перестановку элементов до тех пор, сока все элементы множества не будут упорядочены. Подобными свойствами обладают и те пять алгоритмов сортировки, которые рассмотрены ниже. Они отобраны из множества алгоритмов, потому что, во-первых, наиболее часто используются, а во-вторых, потому что ...
... данных будет нести больше смысла, если его отсортировать каким‑либо образом. Часто требуется сортировать данные несколькими различными способами. Во‑вторых, многие алгоритмы сортировки являются интересными примерами программирования. Они демонстрируют важные методы, такие как частичное упорядочение, рекурсия, слияние списков и хранение двоичных деревьев в массиве. Наконец, сортировка ...
0 комментариев