2.3 Составление структурной таблицы МПА


Нам задан автомат Мили. Для этого автомата необходимо построить прямую таблицу переходов, в которую вписываются пути перехода между соседними отметками. В прямую таблицу переходов, в отличае от обратной таблицы добавляется три столбца. В итоге мы имеем:

аM– исходное состояние

K(аM) – двоичный код исходного состояния

аS – входной сигнал, под воздействием которого происходит переход из состояния AMв состояниеAS

K(аS) – двоичный код состояния перехода

X(аM, аS) – входной сигнал, соответствующий данному переходу

Y(аM, аS) – выходной сигнал, соответствующий данному переходу

F(аM, аS) – обязательные сигналы возбуждения памяти, необходимые для переключения МПА из состояния AMв состояниеAS

Коды состояний K (am) и K (as) будем кодировать двоичной системой счисления. Всего у нас 20 состояний, а это значит, что для кодирования нам необходимо и достаточно 5-х разрядного числа, т.е. используем 5 JK-триггеров.


Таблица 3 - Структурная таблица МПА

аM

K(аM)

аS

K(аS)

X(аM, аS)

Y(аM, аS)

F(аM, аS)

a0 00000 a1 00001 1 J5
a1 00001 a2 00011 1 y1 J4
a2 00011 a3 00010 1 y2 K5
a3 00010 a4 00100 1 y3 J3,K4
a4 00100 a0 00000 x1 y3 K3
a4 00100 a5 00110

1

J4
a5 00110 a6 00111 x2 y5 J5
a5 00110 a6 00111

2, x3

y5 J5
a5 00110 a6 00111

2, 3

J5
a6 00111 a7 00101 x4 y6 K4
a6 00111 a7 00101

4,x5

y6 K4
a6 00111 a7 00101

4,5

K4
a7 00101 a8 01101 x6 y7 J2
a7 00101 a8 01101

6, x7

y7 J2
a7 00101 a8 01101

6, 7

J2
a8 01101 a9 01100 x8 y8 K5
a8 01101 a9 01100

8, x9

y8 K5
a8 01101 a9 01100

8,9

K5
a9 01100 a10 01000 x10 y9 K3
a9 01100 a10 01000

10, x11

y9 K3
a9 01100 a10 01000

10,11

K3
a10 01000 a11 01010 x12 y10 J2
a10 01000 a14 11010

12,x13,x1

y14 J1,J4
a10 01000 a12 01011

12,x13,1

y15 J2,J1
a10 01000 a15 11100

12, 13,x1

y18 J1,J3
a10 01000 a17 11000

12,13,1

y14 J1
a11 01010 a12 01011 1 y17 J5
a12 01011 a13 01111 1 y12 J3
a13 01111 a5 00110 1 y16 K2,K5
a14 11010 a15 11100 1 y16 J3,K4
a15 11100 a16 11110 1 y3 J4
a16 11110 a5 00110 1 y17 K1,K2
a17 11000 a0 00000 x14 y19 K1,K2
a17 11000 a11 01010

14

K1, J4

Составление выражений функций возбуждения автомата:

J5 =

J4 =

J3 =

J2 =

J1 =

K5 =

K4 =

K3 =

K2 =

K1 =


Переведем функции возбуждения в свой базис “ИЛИ-НЕ”:

J5 =

J4 =

J3 =

J2 =

J1 =

K5 =

K4 =

K3 =

K2 =

K1 =

2.4 Построение функциональной схемы

(Приложение А, лист № 5 )

Функциональную схему управляющего автомата согласно заданию надо построить в базисе "ИЛИ - НЕ", т.е. используя логические элементы "ИЛИ - НЕ".

Используя выражения функций возбуждения, спроектируем функциональную схему Управляющего автомата Мили с элементами памяти на JK – триггерах.

Для получения сигналов J1-J5 и K1-K5, мы используем прямые и инверсные состояния x, которые подаются на шину X, и, используя логические элементы "ИЛИ - НЕ" на шину соответственно.

Согласно расчетам и вычислениям, проведенным выше, наш автомат имеет 20 состояний, это значит, что для получения требуемых сигналов в нашей схеме понадобится дешифратор состояний (a0 – a19). Затем для удобства и читаемости схемы, полученные сигналы подаются на шину А. С шины А, используя логические элементы "ИЛИ - НЕ", получаем инверсные состояния

(а0-а19), которые выводим на шину .

Приступаем непосредственно к формированию сигналов возбуждения для этого полученные нами сигналы с шин А и , Х и подаются на элементы "ИЛИ - НЕ", после чего они проходят стадию обработки, на которой получаются нужные нам сигналы J1-J5 и K1-K5. Далее эти сигналы поступают на входы пяти JK триггеров, в результате чего мы имеем сформированные сигналы Q1-Q5 и их инверсные состояния, которые в свою очередь образуют шину Q и подаются на начало функциональной схемы, где будут заново участвовать в формировании сигналов.

Для получения выходных сигналов, мы используем полученную нами шину А, в результате чего получаем выходную шину У.

JK-триггер и его характеристики:




2.5 Расчет такта работы управляющего автомата


Такт работы УА зависит от закона функционирования и структуры автомата. В автомате Мили переключение состояния УА происходит в конце такта после выдачи выходных сигналов в соответствии со значениями поступивших выходных сигналов из ОА. В связи с этим такт работы управляющего автомата, функционирующего как автомат Мили, определяется по формуле:

Т=Туп+Tв

где

Тв=40 нс - максимальное время формирования выходных сигналов,

Тп=80 нс - время переключения памяти состояний.

Ту=20 нс - время на дешифрирование состояний,


Таким образом:

Т=40+80+20=140 нс

Частота


ЗАКЛЮЧЕНИЕ


В основных направлениях экономического и социального развития в последнее время поставлены задачи: развивать теоретическую и прикладную математику, информатику и кибернетику, широко внедрять машины и оборудование со встроенными средствами микропроцессорной техники, ускоренно развить выпуск средств автоматизации управленческого и инженерного труда, малых электронных вычислительных машин.

Сегодня трудно себе представить деятельность человека без электронных вычислительных машин (ЭВМ). Появившись около 50 лет назад, ЭВМ открыли новую страницу в истории человеческих знаний и возможностей, высвободили тысячи вычислителей, значительно облегчили труд ученых, дали возможность изучать сложнейшие процессы. Сейчас нет ни одной отрасли народного хозяйства, где нельзя было бы применить ЭВМ более того, целые разделы науки и техники не могут существовать без них. Прикладная теория цифровых автоматов это тот раздел науки, без которого не может существовать любая ЭВМ, и чем она сложнее, тем сильнее она основана на последних достижениях в области ПТЦА.

В данном курсовом проекте был синтезирован управляющий автомат, осуществляющий управление выполнением операции деления без восстановления остатка со сдвигом остатка. Построен алгоритм обработки чисел. Расписаны управляющие сигналы и другие функции. По имеющемся данным построена функциональная схема устройства.

Сравнивая все изученные мною методы деления, я сделал для себя вывод, что на сегодняшний день наиболее распространенными методами являются: деление с восстановлением со сдвигом остатка, деление без восстановления со сдвигом делителя. Но в то же время самый оптимальный вариант - деление без восстановления со сдвигом остатка. А самое быстродействующее деление без восстановления со сдвигом делителя, так как сдвиг делителя можно совместить во времени со сложением.


Список литературы

1. Савельев А.Я. Арифметические и логические основы цифровых автоматов.

- М.: Высшая школа , 1980.

Савельев А.Я. Прикладная теория цифровых автоматов. - М.: Высшая школа, 1987.

Айтхожаева Е.Ш. Проектирование Управляющего автомата. - А.: КазПТИ,

1987.

4. Айтхожаева Е.Ж. Прикладная теория цифровых автоматов. Алматы: 1993.


ПРИЛОЖЕНИЕ A


ПРИЛОЖЕНИЕ В


Информация о работе «Деление без восстановления остатка со сдвигом остатка»
Раздел: Информатика, программирование
Количество знаков с пробелами: 31451
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
34504
2
0

... этих кодов операция вычитания (или алгебраического сложения) сводится к арифметическому сложению. В результате упрощаются арифметические устройства машин. Для представления двоичных чисел в машине применяют прямой, обратный и дополнительный коды. Во всех этих кодах предусматривается дополнительный разряд для представления знака числа, причем знак «+» кодируется цифрой 0, а знак « — » - цифрой 1. ...

Скачать
30109
7
0

... схемах одинакова. Так во второй и четвертой схемах τц=τсм и, учитывая, что τсм >τсдв, эти схемы позволяют ускорить процесс выполнения операции умножения за счет совмещения операции сложения частичных произведений и сдвигов множимого; 2) по количеству оборудования предпочтение следует отдать первой, а потом третьей схеме умножения. Наиболее удобными для применения в ЭВМ ...

Скачать
18127
2
5

... 1 такт алгоритма синхронизировать выполнение сдвига на нескольких разрядах .Другим методом является работы сумматоров , а также совмещение во времени сдвиговых операций и операций суммирования Логические методы ускорения операции умножения требуют изменения центрального управления . Основным источником повышения эффективности является уменьшение кол-ва сложений выполняемых в процессе получения ...

Скачать
6283
0
0

... операции АЛУ осуществляется по шагам и результат каждого шага отражается на экране в виде кодов содер­жимого соответсвующего регистров, промежуточных и конечных ре­зультатов. В процессе выполнения лабораторной работы необходимо зафиксировать по шагам состояние всех элементов АЛУ, индицируе­мые соответствующими кодами. Работу АЛУ необходимо изучить для различных значений опе­рандов и различных ...

0 комментариев


Наверх