1. Препятствие - физически преграждает злоумышленнику путь к защищаемой информации (на территорию и в помещения с аппаратурой, носителям информации).
Управление доступом - способ защиты информации регулированием использования всех ресурсов системы (технических, программных средств, элементов данных).
Управление доступом включает следующие функции защиты:
идентификацию пользователей, персонала и ресурсов системы, причем под идентификацией понимается присвоение каждому названному выше объекту персонального имени, кода , пароля и опознание субъекта или объекта про предъявленному им идентификатору;
проверку полномочий, заключающуюся в проверке соответствия дня недели, времени суток, а также запрашиваемых ресурсов и процедур установленному регламенту;
разрешение и создание условий работы в пределах установленного регламента;
регистрацию обращений к защищаемым ресурсам;
реагирование (задержка работ, отказ, отключение, сигнализация) при попытках несанкционированных действий.
Рис. 2. Способы и средства защиты информации в СОД.
Маскировка - способ защиты информации с СОД путем ее криптографического. При передаче информации по линиям связи большой протяженности криптографическое закрытие является единственным способом надежной ее защиты.
Регламентация - заключается в разработке и реализации в процессе функционирования СОД комплексов мероприятий, создающих такие условия автоматизированной обработки и хранения в СОД защищаемой информации, при которых возможности несанкционированного доступа к ней сводились бы к минимуму. Для эффективной защиты необходимо строго регламентировать структурное построение СОД (архитектура зданий, оборудование помещений, размещение аппаратуры), организацию и обеспечение работы всего персонала. Занятого обработкой информации.
Принуждение - пользователи и персонал СОД вынуждены соблюдать правила обработки и использования защищаемой информации под угрозой материальной, административной или уголовной ответственности.
Рассмотренные способы защиты информации реализуются применением различных средств защиты, причем различают технические, программные, организационные законодательные и морально-этические средства.
Организационными средствами защиты называются организационно-правовые мероприятия, осуществляемые в процессе создания и эксплуатации СОД для обеспечения защиты информации. Организационные мероприятия охватывают все структурные элементы СОД на всех этапах: строительство помещений, проектирование системы, монтаж и наладка оборудования, испытания и проверки, эксплуатация.
К законодательным средствам защиты относятся законодательные акты страны, которыми регламентируются правила использования и обработки информации ограниченного доступа и устанавливаются меры ответственности за нарушение этих правил.
К морально-этическим средствам защиты относятся всевозможные нормы, которые сложились традиционно или складываются по мере распространения вычислительных средств в данной стране или обществе. Эти нормы большей частью не являются обязательными, как законодательные меры, однако несоблюдение их ведет обычно к потере авторитета, престижа человека или группы лиц.
Все рассмотренные средства защиты делятся на:
ФОРМАЛЬНЫЕ - выполняющие защитные функции строго по заранее предусмотренной процедуре и без непосредственного участия человека.
НЕФОРМАЛЬНЫЕ - такие средства, которые либо определяются целенаправленной деятельностью людей, либо регламентируют эту деятельность.
1.2. Анализ методов защиты информации в системах обработки данных.
Обеспечение надежной защиты информации предполагает:
Обеспечение безопасности информации в СОД это есть процесс непрерывный, заключающийся в систематическом контроле защищенности, выявлении узких и слабых мест в системе защиты, обосновании и реализации наиболее рациональных путей совершенствования и развития системы защиты.
Безопасность информации в СОД. Последняя может быть обеспечена лишь при комплексном использовании всего арсенала имеющихся средств защиты.
Надлежащую подготовку пользователей и соблюдение ими всех правил защиты.
Что никакую систему защиты нельзя считать абсолютно надежной, надо исходить их того, что может найтись такой искусный злоумышленник, который отыщет лазейку для доступа к информации.
Защита информации в ПЭВМ. Каналы утечки информации.
Защита информации в ПЭВМ - организованная совокупность правовых мероприятий, средств и методов (организационных, технических, программных), предотвращающих или снижающих возможность образования каналов утечки, искажения обрабатываемой или хранимой информации в ПЭВМ.
Канал утечки (КУ) информации - совокупность источника информации, материального носителя или среды распространения несущего эту информацию сигнала и средства выделения информации из сигнала или носителя.
Известны следующие КУ (Рис. 3):
Электромагнитный канал. Причиной его возникновения является электромагнитное поле, связанное с протеканием электрического тока в технических средствах обработки информации. Электромагнитное поле может индуцировать токи в близко расположенных проводных линиях (наводки).
Электромагнитный канал в свою очередь делится на:
Радиоканал (высокочастотные излучения).
Низкочастотный канал.
Сетевой канал (наводки на провода заземления).
Канал заземления (наводки на провода заземления).
Линейный канал (наводки на линии связи между ПЭВМ).
Акустический канал. Он связан с распространением звуковых волн в воздухе или упругих колебаний в других средах, возникающих при работе устройств отображения информации.
Канал несанкционированного копирования.
Канал несанкционированного доступа.
Рис. 3. Основные каналы утечки информации при обработке ее на ПЭВМ
Прямое хищение (потеря) магнитных носителей информации и документов, образующихся при обработке данных на ПЭВМ.
Организационные меры защиты - меры общего характера, затрудняющие доступ к ценной информации посторонним лицам, вне зависимости от особенностей способа обработки информации и каналов утечки информации.
Организационно-технические меры защиты - меры, связанные со спецификой каналов утечки и метода обработки информации , но не требующие для своей реализации нестандартных приемов и/или оборудования.
Технические меры защиты - меры, жестко связанные с особенностями каналов утечки и требующее для своей реализации специальных приемов, оборудования или программных средств.
Программные “вирусы” - программы, обладающие свойствами самодублирования и могущие скрывать признаки своей работы и причинять ущерб информации в ПЭВМ.
Вирусы делятся на:
файловые - присоединяются к выполняемым файлам;
загрузочные - размещаются в загрузочных секторах ПЭВМ.
Несанкционированный доступ к информации в ПЭВМ - действие противника, приводящие к его ознакомлению с содержанием ценной информации или пользованию программными средствами без ведома их владельца.
Несанкционированные действия прикладных программ - действия негативного характера, не связанные с основным назначением прикладных программ.
Организационные и организационно-технические меры защиты информации в системах обработки данных.
Организационные меры предусматривают:
Ограничение доступа в помещения, в которых происходит обработка конфиденциальной информации.
Допуск к решению задач на ПЭВМ по обработке секретной, конфиденциальной информации проверенных должностных лиц, определение порядка проведения работ на ПЭВМ.
Хранение магнитных носителей в тщательно закрытых прочных шкафах.
Назначение одной или нескольких ПЭВМ для обработки ценной информации и дальнейшая работа только на этих ПЭВМ.
Установка дисплея, клавиатуры и принтера таким образом, чтобы исключить просмотр посторонними лицами содержания обрабатываемой информации.
Постоянное наблюдение за работой принтера и других устройств вывода на материальных носитель ценной информации.
Уничтожение красящих лент или иных материалов, содержащих фрагменты ценной информации.
Запрещение ведения переговоров о непосредственном содержании конфиденциальной информации лицам, занятым ее обработкой.
Организационно-технические меры предполагают:
Ограничение доступа внутрь корпуса ПЭВМ путем установления механических запорных устройств.
Уничтожение всей информации на винчестере ПЭВМ при ее отправке в ремонт с использованием средств низкоуровневого форматирования.
Организацию питания ПЭВМ от отдельного источника питания или от общей (городской) электросети через стабилизатор напряжения (сетевой фильтр) или мотор-генератор.
Использование для отображения информации жидкокристаллических или плазменных дисплеев, а для печати - струйных или лазерных принтеров.
Размещение дисплея, системного блока, клавиатуры и принтера на расстоянии не менее 2,5-3,0 метров от устройств освещения, кондиционирования воздуха, связи (телефона), металлических труб, телевизионной и радиоаппаратуры, а также других ПЭВМ, не использующихся для обработки конфиденциальной информации.
Отключение ПЭВМ от локальной сети или сети удаленного доступа при обработке на ней конфиденциальной информации, кроме случая передачи этой информации по сети.
Установка принтера и клавиатуры на мягкие прокладки с целью снижения утечки информации по акустическому каналу.
Во время обработки ценной информации на ПЭВМ рекомендуется включать устройства, создающие дополнительный шумовой фон (кондиционеры, вентиляторы), а также обрабатывать другую информацию на рядом стоящих ПЭВМ. Эти устройства должны быть расположены на расстоянии не менее 2,5-3,0 метров.
Уничтожение информации непосредственно после ее использования.
Основные методы защиты ПЭВМ от утечек информации по электромагнитному каналу.
Основным источником высокочастотного электромагнитного излучения является дисплей. Изображение с его экрана можно принимать на расстоянии сотен метров. Полностью нейтрализовать утечку можно лишь с использованием генераторов шума. Другим способ защиты является использование плазменных или жидкокристаллических дисплеев.
Еще одним надежным способом является полное экранирование помещения стальными, алюминиевыми или из специальной пластмассы листами толщиной не менее 1 мм с надежным заземлением. На окна в этом случае рекомендуется помещать сотовый фильтр - алюминиевую решетку с квадратными ячейками размером не более 1 см.
Принтер является источником мощного низкочастотного электромагнитного излучения, которое быстро затухает с ростом расстояния. Тем не менее, это излучение также опасно. Борьба с ним крайне затруднена, так как оно имеет сильную магнитную составляющую, которая плохо зашумляется и экранируется. Поэтому рекомендуется либо зашумление мощным шумовым сигналом, либо использование струйного или лазерного принтеров, или термопечати.
Очень опасны специально встроенные в ПЭВМ передатчики или радиомаяки (закладки - программные или технические средства, облегчающие выделение информации из каналов утечки или нарушающие предписанный алгоритм работы ПЭВМ). По этой же причине не рекомендуется обрабатывать ценную информацию на случайных ПЭВМ и подделках под фирму из развивающихся стран. Если компьютер отсылался в ремонт, то необходимо убедиться, что в нем нет закладов.
Электромагнитное излучение от внешних проводников и кабелей ПЭВМ невелика, но необходимо следить, чтобы они не пересекались с проводами, выходящими за пределы помещения.
Монтаж заземлении от периферийного оборудования необходимо вести в пределах контролируемой зоны. Нельзя допускать, чтобы заземление пересекалось с другими проводниками.
Все соединения ПЭВМ с “внешним миром” необходимо проводить через электрическую развязку.
Основными сервисами безопасности являются:
•идентификация и аутентификация,
•управление доступом,
•протоколирование и аудит,
•криптография,
•экранирование.
Идентификация и аутентификация
Идентификацию и аутентификацию можно считать основой программно-технических средств безопасности, поскольку остальные сервисы рассчитаны на обслуживание именованных субъектов. Идентификация и аутентификация - это первая линия обороны, "проходная" информационного пространства организации.
Идентификация позволяет субъекту - пользователю или процессу, действующему от имени определенного пользователя, назвать себя, сообщив свое имя. Посредством аутентификации вторая сторона убеждается, что субъект действительно тот, за кого себя выдает. В качестве синонима слова "аутентификация" иногда используют сочетание "проверка подлинности". Субъект может подтвердить свою подлинность, если предъявит по крайней мере одну из следующих сущностей:
•нечто, что он знает: пароль, личный идентификационный номер, криптографический ключ и т.п.,
•нечто, чем он владеет: личную карточку или иное устройство аналогичного назначения,
•нечто, что является частью его самого: голос, отпечатки пальцев и т.п., то есть свои биометрические характеристики,
•нечто, ассоциированное с ним, например координаты.
Надежная идентификация и аутентификация затруднена по ряду принципиальных причин. Во-первых, компьютерная система основывается на информации в том виде, в каком она была получена; строго говоря, источник информации остается неизвестным. Например, злоумышленник мог воспроизвести ранее перехваченные данные. Следовательно, необходимо принять меры для безопасного ввода и передачи идентификационной и аутентификационной информации; в сетевой среде это сопряжено с особыми трудностями. Во-вторых, почти все аутентификационные сущности можно узнать, украсть или подделать. В-третьих, имеется противоречие между надежностью аутентификации с одной стороны, и удобствами пользователя и системного администратора с другой. Так, из соображений безопасности необходимо с определенной частотой просить пользователя повторно вводить аутентификационную информацию (ведь на его место мог сесть другой человек), а это повышает вероятность подглядывания за вводом. В-четвертых, чем надежнее средство защиты, тем оно дороже.
Необходимо искать компромисс между надежностью, доступностью по цене и удобством использования и администрирования средств идентификации и аутентификации. Обычно компромисс достигается за счет комбинирования двух первых из перечисленных базовых механизмов проверки подлинности.
Наиболее распространенным средством аутентификации являются пароли. Система сравнивает введенный и ранее заданный для данного пользователя пароль; в случае совпадения подлинность пользователя считается доказанной. Другое средство, постепенно набирающее популярность и обеспечивающее наибольшую эффективность, - секретные криптографические ключи пользователей.
Главное достоинство парольной аутентификации - простота и привычность. Пароли давно встроены в операционные системы и иные сервисы. При правильном использовании пароли могут обеспечить приемлемый для многих организаций уровень безопасности. Тем не менее по совокупности характеристик их следует признать самым слабым средством проверки подлинности. Надежность паролей основывается на способности помнить их и хранить в тайне. Ввод пароля можно подсмотреть. Пароль можно угадать методом грубой силы, используя, быть может, словарь. Если файл паролей зашифрован, но доступен на чтение, его можно перекачать к себе на компьютер и попытаться подобрать пароль, запрограммировав полный перебор.
Пароли уязвимы по отношению к электронному перехвату - это наиболее принципиальный недостаток, который нельзя компенсировать улучшением администрирования или обучением пользователей. Практически единственный выход - использование криптографии для шифрования паролей перед передачей по линиям связи или вообще их не передавать, как это делается в сервере аутентификации Kerberos.
Тем не менее следующие меры позволяют значительно повысить надежность парольной защиты:
•наложение технических ограничений (пароль должен быть не слишком коротким, он должен содержать буквы, цифры, знаки пунктуации и т.п.);
•управление сроком действия паролей, их периодическая смена;
•ограничение доступа к файлу паролей;
•ограничение числа неудачных попыток входа в систему, что затруднит применение метода грубой силы;
•обучение и воспитание пользователей;
•использование программных генераторов паролей, которые, основываясь на несложных правилах, могут порождать только благозвучные и, следовательно, запоминающиеся пароли.
Перечисленные меры целесообразно применять всегда, даже если наряду с паролями используются другие методы аутентификации, основанные, например, на применении токенов.
Токен - это предмет или устройство, владение которым подтверждает подлинность пользователя. Различают токены с памятью (пассивные, которые только хранят, но не обрабатывают информацию) и интеллектуальные токены (активные).
Самой распространенной разновидностью токенов с памятью являются карточки с магнитной полосой. Для использования подобных токенов необходимо устройство чтения, снабженное также клавиатурой и процессором. Обычно пользователь набирает на этой клавиатуре свой личный идентификационный номер, после чего процессор проверяет его совпадение с тем, что записано на карточке, а также подлинность самой карточки. Таким образом, здесь фактически применяется комбинация двух способов защиты, что существенно затрудняет действия злоумышленника.
Необходима обработка аутентификационной информации самим устройством чтения, без передачи в компьютер - это исключает возможность электронного перехвата.
Иногда (обычно для физического контроля доступа) карточки применяют сами по себе, без запроса личного идентификационного номера.
Как известно, одним из самых мощных средств в руках злоумышленника является изменение программы аутентификации, при котором пароли не только проверяются, но и запоминаются для последующего несанкционированного использования.
Интеллектуальные токены характеризуются наличием собственной вычислительной мощности. Они подразделяются на интеллектуальные карты, стандартизованные ISO и прочие токены. Карты нуждаются в интерфейсном устройстве, прочие токены обычно обладают ручным интерфейсом (дисплеем и клавиатурой) и по внешнему виду напоминают калькуляторы. Чтобы токен начал работать, пользователь должен ввести свой личный идентификационный номер.
По принципу действия интеллектуальные токены можно разделить на следующие категории.
•Статический обмен паролями: пользователь обычным образом доказывает токену свою подлинность, затем токен проверяется компьютерной системой.
•Динамическая генерация паролей: токен генерирует пароли, периодически изменяя их. Компьютерная система должна иметь синхронизированный генератор паролей. Информация от токена поступает по электронному интерфейсу или набирается пользователем на клавиатуре терминала.
•Запросно-ответные системы: компьютер выдает случайное число, которое преобразуется криптографическим механизмом, встроенным в токен, после чего результат возвращается в компьютер для проверки. Здесь также возможно использование электронного или ручного интерфейса. В последнем случае пользователь читает запрос с экрана терминала, набирает его на клавиатуре токена (возможно, в это время вводится и личный номер), а на дисплее токена видит ответ и переносит его на клавиатуру терминала.
Главным достоинством интеллектуальных токенов является возможность их применения при аутентификации по открытой сети. Генерируемые или выдаваемые в ответ пароли постоянно меняются, и злоумышленник не получит заметных дивидендов, даже если перехватит текущий пароль. С практической точки зрения, интеллектуальные токены реализуют механизм одноразовых паролей.
Еще одним достоинством является потенциальная многофункциональность интеллектуальных токенов. Их можно применять не только для целей безопасности, но и, например, для финансовых операций.
Устройства контроля биометрических характеристик сложны и недешевы, поэтому пока они применяются только в специфических организациях с высокими требованиями к безопасности.
В последнее время набирает популярность аутентификация путем выяснения координат пользователя. Идея состоит в том, чтобы пользователь посылал координаты спутников системы GPS (Global Positioning System), находящихся в зоне прямой видимости. Сервер аутентификации знает орбиты всех спутников, поэтому может с точностью до метра определить положение пользователя.
Поскольку орбиты спутников подвержены колебаниям, предсказать которые крайне сложно, подделка координат оказывается практически невозможной. Ничего не даст и перехват координат - они постоянно меняются. Непрерывная передача координат не требует от пользователя каких-либо дополнительных усилий, поэтому он может без труда многократно подтверждать свою подлинность. Аппаратура GPS сравнительно недорога и апробирована, поэтому в тех случаях, когда легальный пользователь должен находиться в определенном месте, данный метод проверки подлинности представляется весьма привлекательным.
Очень важной и трудной задачей является администрирование службы идентификации и аутентификации. Необходимо постоянно поддерживать конфиденциальность, целостность и доступность соответствующей информации, что особенно непросто в сетевой разнородной среде. Целесообразно, наряду с автоматизацией, применить максимально возможную централизацию информации. Достичь этого можно применяя выделенные серверы проверки подлинности (такие как Kerberos) или средства централизованного администрирования (например CA-Unicenter). Некоторые операционные системы предлагают сетевые сервисы, которые могут служить основой централизации административных данных.
Централизация облегчает работу не только системным администраторам, но и пользователям, поскольку позволяет реализовать важную концепцию единого входа. Единожды пройдя проверку подлинности, пользователь получает доступ ко всем ресурсам сети в пределах своих полномочий.
Управление доступом
Средства управления доступом позволяют специфицировать и контролировать действия, которые субъекты - пользователи и процессы могут выполнять над объектами - информацией и другими компьютерными ресурсами. Речь идет о логическом управлении доступом, который реализуется программными средствами. Логическое управление доступом - это основной механизм многопользовательских систем, призванный обеспечить конфиденциальность и целостность объектов и, до некоторой степени, их доступность путем запрещения обслуживания неавторизованных пользователей. Задача логического управления доступом состоит в том, чтобы для каждой пары (субъект, объект) определить множество допустимых операций, зависящее от некоторых дополнительных условий, и контролировать выполнение установленного порядка.
Контроль прав доступа производится разными компонентами программной среды - ядром операционной системы, дополнительными средствами безопасности, системой управления базами данных, посредническим программным обеспечением (таким как монитор транзакций) и т.д.
При принятии решения о предоставлении доступа обычно анализируется следующая информация.
•Идентификатор субъекта (идентификатор пользователя, сетевой адрес компьютера и т.п.). Подобные идентификаторы являются основой добровольного управления доступом.
•Атрибуты субъекта (метка безопасности, группа пользователя и т.п.). Метки безопасности - основа принудительного управления доступом.
•Место действия (системная консоль, надежный узел сети и т.п.).
•Время действия (большинство действий целесообразно разрешать только в рабочее время).
•Внутренние ограничения сервиса (число пользователей согласно лицензии на программный продукт и т.п.).
Удобной надстройкой над средствами логического управления доступом является ограничивающий интерфейс, когда пользователя лишают самой возможности попытаться совершить несанкционированные действия, включив в число видимых ему объектов только те, к которым он имеет доступ.
Протоколирование и аудит
Под протоколированием понимается сбор и накопление информации о событиях, происходящих в информационной системе предприятия. У каждого сервиса свой набор возможных событий, но в любом случае их можно подразделить на внешние - вызванные действиями других сервисов, внутренние - вызванные действиями самого сервиса, и клиентские - вызванные действиями пользователей и администраторов.
Аудит - это анализ накопленной информации, проводимый оперативно, почти в реальном времени, или периодически.
Реализация протоколирования и аудита преследует следующие главные цели:
•обеспечение подотчетности пользователей и администраторов;
•обеспечение возможности реконструкции последовательности событий; •обнаружение попыток нарушений информационной безопасности; •предоставление информации для выявления и анализа проблем.
Обеспечение подотчетности важно в первую очередь как средство сдерживания. Если пользователи и администраторы знают, что все их действия фиксируются, они, возможно, воздержатся от незаконных операций. Если есть основания подозревать какого-либо пользователя в нечестности, можно регистрировать его действия особенно детально, вплоть до каждого нажатия клавиши. При этом обеспечивается не только возможность расследования случаев нарушения режима безопасности, но и откат некорректных изменений. Тем самым обеспечивается целостность информации.
Реконструкция последовательности событий позволяет выявить слабости в защите сервисов, найти виновника вторжения, оценить масштабы причиненного ущерба и вернуться к нормальной работе.
Выявление и анализ проблем позволяют помочь улучшить такой параметр безопасности, как доступность. Обнаружив узкие места, можно попытаться переконфигурировать или перенастроить систему, снова измерить производительность и т.д.
Криптография
Одним из наиболее мощных средств обеспечения конфиденциальности и контроля целостности информации является криптография. Во многих отношениях она занимает центральное место среди программно-технических регуляторов безопасности, являясь основой реализации многих из них и, в то же время, последним защитным рубежом.
Различают два основных метода шифрования, называемые симметричными и асимметричными. В первом из них один и тот же ключ используется и для шифровки, и для расшифровки сообщений. Существуют весьма эффективные методы симметричного шифрования. Имеется и стандарт на подобные методы - ГОСТ 28147-89 "Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования".
Основным недостатком симметричного шифрования является то, что секретный ключ должен быть известен и отправителю, и получателю. С одной стороны, это ставит новую проблему рассылки ключей. С другой стороны, получатель, имеющий шифрованное и расшифрованное сообщение, не может доказать, что он получил его от конкретного отправителя, поскольку такое же сообщение он мог сгенерировать и сам.
В асимметричных методах применяются два ключа. Один из них, несекретный, используется для шифровки и может публиковаться вместе с адресом пользователя, другой - секретный, применяется для расшифровки и известен только получателю. Самым популярным из асимметричных является метод RSA (Райвест, Шамир, Адлеман), основанный на операциях с большими (100-значными) простыми числами и их произведениями.
Асимметричные методы шифрования позволяют реализовать так называемую электронную подпись, или электронное заверение сообщения. Идея состоит в том, что отправитель посылает два экземпляра сообщения - открытое и дешифрованное его секретным ключом (естественно, дешифровка незашифрованного сообщения на самом деле есть форма шифрования). Получатель может зашифровать с помощью открытого ключа отправителя дешифрованный экземпляр и сравнить с открытым. Если они совпадут, личность и подпись отправителя можно считать установленными.
Существенным недостатком асимметричных методов является их низкое быстродействие, поэтому их приходится сочетать с симметричными, при этом следует учитывать, что асимметричные методы на 3 - 4 порядка медленнее симметричных. Так, для решения задачи рассылки ключей сообщение сначала симметрично шифруют случайным ключом, затем этот ключ шифруют открытым асимметричным ключом получателя, после чего сообщение и ключ отправляются по сети.
При использовании асимметричных методов необходимо иметь гарантию подлинности пары (имя, открытый ключ) адресата. Для решения этой задачи вводится понятие сертификационного центра, который заверяет справочник имен/ключей своей подписью.
Услуги, характерные для асимметричного шифрования, можно реализовать и с помощью симметричных методов, если имеется надежная третья сторона, знающая секретные ключи своих клиентов. Эта идея положена, например, в основу сервера аутентификации Kerberos.
Криптографические методы позволяют надежно контролировать целостность информации. В отличие от традиционных методов контрольного суммирования, способных противостоять только случайным ошибкам, криптографическая контрольная сумма (имитовставка), вычисленная с применением секретного ключа, практически исключает все возможности незаметного изменения данных.
В последнее время получила распространение разновидность симметричного шифрования, основанная на использовании составных ключей. Идея состоит в том, что секретный ключ делится на две части, хранящиеся отдельно. Каждая часть сама по себе не позволяет выполнить расшифровку. Если у правоохранительных органов появляются подозрения относительно лица, использующего некоторый ключ, они могут получить половинки ключа и дальше действовать обычным для симметричной расшифровки образом.
Экранирование
Экран - это средство разграничения доступа клиентов из одного множества к серверам из другого множества. Экран выполняет свои функции, контролируя все информационные потоки между двумя множествами систем.
В простейшем случае экран состоит из двух механизмов, один из которых ограничивает перемещение данных, а второй, наоборот, ему способствует. В более общем случае экран или полупроницаемую оболочку удобно представлять себе как последовательность фильтров. Каждый из них может задержать данные, а может и сразу "перебросить" их "на другую сторону". Кроме того, допускаются передача порции данных на следующий фильтр для продолжения анализа или обработка данных от имени адресата и возврат результата отправителю.
Помимо функций разграничения доступа экраны осуществляют также протоколирование информационных обменов.
Обычно экран не является симметричным, для него определены понятия "внутри" и "снаружи". При этом задача экранирования формулируется как защита внутренней области от потенциально враждебной внешней. Так, межсетевые экраны устанавливают для защиты локальной сети организации, имеющей выход в открытую среду, подобную Internet. Другой пример экрана - устройство защиты порта, контролирующее доступ к коммуникационному порту компьютера до и после независимо от всех прочих системных защитных средств.
Экранирование позволяет поддерживать доступность сервисов внутренней области, уменьшая или вообще ликвидируя нагрузку, индуцированную внешней активностью. Уменьшается уязвимость внутренних сервисов безопасности, поскольку первоначально сторонний злоумышленник должен преодолеть экран, где защитные механизмы сконфигурированы особенно тщательно и жестко. Кроме того, экранирующая система, в отличие от универсальной, может быть устроена более простым и, следовательно, более безопасным образом.
Экранирование дает возможность контролировать также информационные потоки, направленные во внешнюю область, что способствует поддержанию режима конфиденциальности.
Важным понятием экранирования является зона риска, определяемая как множество систем, которые становятся доступными злоумышленнику после преодоления экрана или какого-либо из его компонентов. Для повышения надежности защиты, экран реализуют как совокупность элементов, так что "взлом" одного из них еще не открывает доступ ко всей внутренней сети. Экранирование и с точки зрения сочетания с другими сервисами безопасности, и с точки зрения внутренней организации использует идею многоуровневой защиты, за счет чего внутренняя сеть оказывается в пределах зоны риска только в случае преодоления злоумышленником нескольких, по-разному организованных защитных рубежей. Экранирование может использоваться как сервис безопасности не только в сетевой, но и в любой другой среде, где происходит обмен сообщениями.
Небольшими сетями пользуются в основном небольшие организации, где все сотрудники знают друг друга и доверяют друг другу. Однако, даже в этом случае сеть должна обеспечивать хотя бы минимальные средства защиты информации своих пользователей.
В любой организации найдутся документы и сведения, которые не обязательно знать всем пользователям местной сети. Такая информация должна храниться в специальном каталоге, доступ к которому имеют только уполномоченные лица.
Чаще любопытство, чем злой умысел сотрудников заставляют их прочитывать чужие файлы.
Далеко не каждый пользователь сети настолько силен и в других компьютерных системах, чтобы иметь неограниченный доступ к сетевым дискам. Одна неосторожная команда может уничтожить весь каталог сетевых файлов. Одна из причин, по которой в сетях устанавливают систему защиты, состоит в том, чтобы уберечь сетевую информацию от необдуманных действий пользователей.
Первый шаг по установке системы защиты состоит в создании специальных пользовательских входов, предоставляющих доступ к сети только определенному составу пользователей. Если пользователь не имеет своего входа, он не сможет войти в сеть.
Каждый вход связан с идентификатором пользователя, который вводится при входе в сеть.
Кроме пользовательского кода, вход содержит также другую информацию о своем владельце: пароль, полное имя и права доступа, которые определяют, какие действия и сетевые команды позволено использовать в работе этому сотруднику, а какие нет.
Иногда система установлена таким образом, что некоторая группа пользователей может работать в сети только в определенный период времени.
В некоторых системах существует возможность открывать специализи-
рованные входы.
Возможность создания специализированных входов значительно облегчает работу, так как можно предоставить равные права пользования сетью некоторой группе сотрудников. Однако, дело в том, что пользователи специализированного входа работают с одним и тем же паролем. Это значительно ослабляет систему защиты сети, поскольку она действует эффективнее, если каждый пользователь имеет свой личный пароль и хранит его в строжайшем секрете.
Если есть необходимость предоставить одинаковые права доступа некоторой группе сотрудников, лучше пользоваться не специализированными, а групповыми входами. В этом случае каждый пользователь входа имеет как бы отдельный подвход с собственным идентификатором и паролем, однако всем абонентам группового входа предоставляются равные права при работе с сетевой системой. Такой подход намного надежнее, поскольку каждый сотрудник имеет свой личный сетевой пароль.
Одним из важнейших аспектов системы сетевой защиты является система личных паролей сотрудников.
Иногда устанавливают также время действия пароля. Например, 30 дней. По истечении этого срока пользователь должен сменить пароль. Это не слишком удобно, однако сокращает риск того, что кто-либо узнает пароль и захочет им воспользоваться немного позже.
Пользовательские входы и пароли — это первая линия обороны системы защиты.
После того как пользователь получил доступ к сети, введя правильный идентификатор и пароль, он переходит ко второй линии, предлагаемой системой защиты: сеть определяет привилегии, которые имеет данный пользователь.
Все пользователи сети были задуманы как равные сотрудники одной системы. Но некоторые из них имеют определенные дополнительные права. Привилегии —отличают таких пользователей от остальных сотрудников.
От типа сетевой операционной системы зависит, какие именно привилегии можно устанавливать в своей сети.
Обычно права доступа распространяются на целые каталоги, хотя возможно установить и специальный доступ к некоторым отдельным файлам или группам файлов. При этом используется специализированное имя файла.
В большинстве сетей права доступа устанавливаются на весь каталог целиком и распространяются на все подкаталоги, если только на какие-нибудь из последних не наложены специальные права.
Главным
отличием атрибутов
DOS от прав
доступа в сетевых
системах яв-
ляется
то, что значение
атрибута
распространяется
на всех пользователей,
желающих работать
с файлом. В то
же время права
доступа у
пользователей
разные; тогда
как один из них
имеет право
только читать
файл, другой
может пользоваться
неограниченным
доступом к этой
информации.
Понятно, что,
как минимум,
один человек
в сети должен
иметь неограниченный
доступ ко всей
информации,
хранящейся
в сети и ко всем
сетевым ресурсам.
Такой человек
называется
контролером
сети, или
администратором.
Он несет ответственность
за установку
и работу системы
защиты. Вот
почему на этого
пользователя
не налагаются
никакие защитные
ограничения.
Во многих
сетях администраторский
вход открывается
автоматически
при
установке
системы. Идентификатор
пользователя
и пароль, используемые в этом входе,
должны быть
отражены в
сетевой документации.
Они одинаковы
для любой системы
данного типа.
Необходимо
сменить пароль
на таком входе.
Иначе любой
пользователь,
знающий стандартные
идентификатор
и пароль, устанавливаемые
системой на
администраторском
входе, сможет
работать в сети
с неограниченными
возможностями
доступа к любым
компонентам
системы.
Одна из причин, по которой NetWare решила отказаться от DOS и создать собственную операционную систему, заключалась в несовершенстве файловых атрибутов, предлагаемых DOS. Вместо 4-х DOS-атрибутов NetWare обеспечивает 14 своих.
Каждый серверный компьютер в сети должен иметь свой собственный список пользовательских входов. Если установлена сеть из пяти машин, причем каждая из них работает и как сервер, и как рабочая станция, то необходимо создать пять различных списков: по одному на каждый сервер. Списками нужно правильно управлять, иначе они могут выйти из-под контроля.
Необходимо следить за тем, чтобы идентификатор конкретного пользователя был одинаковым на всех серверах. Не обязательно, чтобы каждый пользователь имел доступ ко всем серверам. В целях безопасности системы лучше, если пользователю будет предоставлен доступ только к тем серверным компьютерам, которые нужны ему непосредственно для работы.
В некоторых сетях существует возможность копирования пользовательских списков с одного сервера на другой. Это позволяет легче и эффективнее управлять сетью. После того как составлен один из списков, его можно скопировать его на все остальные серверные машины. Если нужно внести изменения в список, достаточно изменить всего одну копию, а затем просто записать ее на все сетевые серверы.
В некоторых сетях, например NetWare 4.0 или Windows for Workgroups, предусмотрена возможность использования одного общего списка для всех серверных компьютеров. LANtastic 5.0 тоже предоставляет подобные услуги. Можно пользоваться удаленными входами (remote accounts), которые позволяют ограничиться хранением пользовательского списка всего на одном сервере. Остальные серверные машины в случае необходимости обращаются за информацией к серверу, на котором находится список.
Рассмотренные способы защиты, предоставляются сетевым программным обеспечением. Но существует много других возможностей защитить сетевую информацию от постороннего вторжения. Вот несколько вариантов подобной защиты. Все компьютеры сети должны быть расположены в надежных и безопасных местах.
Необходимо соблюдать предосторожности при работе с принтером. Если отсылается на печать какая-нибудь конфиденциальная информация, необходимо обеспечить, чтобы она распечатывалась без присутствия посторонних лиц.
Если в сети установлен модем, позволяющий пользователю получать доступ к системе с удаленного компьютера, то посторонних вторжений можно ожидать и со стороны модема. В данном случае необходимо, чтобы каждый идентификатор пользователя был защищен паролем.
Управленческие меры обеспечения информационной безопасности
Главная цель мер, предпринимаемых на управленческом уровне, - сформировать программу работ в области информационной безопасности и обеспечить ее выполнение, выделяя необходимые ресурсы и контролируя состояние дел. Основой программы является многоуровневая политика безопасности, отражающая подход образовательного учреждения к защите своих информационных активов.
Меры непосредственной защиты ПЭВМ .
Важным аспектом всестороннего подхода к защите ЭВМ являются меры защиты вычислительных устройств от прямых угроз, которые можно разбить на две категории:
Меры защиты от стихийных бедствий.
Меры защиты от злоумышленников.
Наиболее опасным из стихийных бедствий можно считать пожар. Соблюдение элементарных пожарных норм позволяет решить эту проблему. Наиболее важен и интересен второй пункт.
Для того, чтобы защитить компьютеры от злоумышленников, а следовательно защитить информацию, необходимо ограничить непосредственный доступ к вычислительной системе. Для этого следует организовать охрану вычислительного комплекса. Можно выделить четыре вида охранных мер:
охрана границ территории (некоторой зоны, окружающей здание);
охрана самого здания или некоторого пространства вокруг него;
охрана входов в здание;
охрана критических зон.
Для защиты границ территории можно использовать ограды, инфракрасные или СВЧ-детекторы, датчики движения а также замкнутые телевизионные системы.
Для защиты здания последнее должно иметь толстые стены, желательно из железобетона, толщиной примерно 30-35 см.
При защите входов в здание необходимо надежно охранять все возможные пути проникновения в здание - как обычно используемые входы, так и окна и вентиляционные отверстия.
Обычные входы можно контролировать посредством личного опознавания входящего охраной или с использованием некоторых механизмов, например, ключей или специальных карточек.
Для обнаружения проникновения злоумышленника в критическую зону можно использовать существующие системы сигнализации. Фотометрические системы обнаруживают изменения уровня освещенности. Звуковые, ультразвуковые или СВЧ - системы обнаружения перемещения объектов реагируют на изменение частоты сигнала, отраженного от движущегося тела. Звуковые и сейсмические (вибрационные) системы обнаруживают шум и вибрацию. И наконец, системы, реагирующие на приближение к защищаемому объекту, обнаруживают нарушение структуры электромагнитного или электростатического поля.
Идентификация и установление личности.
Так как функционирование всех механизмов ограничения доступа, использующих аппаратные средства или средства математического обеспечения основно на предположении, что пользователь представляет собой конкретное лицо, то должен существовать некоторый механизм установление его подлинности. Этот механизм может быть основан на выявлении того, что знает только данный пользователь или имеет при себе, или на выявлении некоторых особенностей самого пользователя.
При использовании замков и электрических или механических кнопочных систем применяются комбинации наборов знаков. Такая система, используемая для регулирования доступа к ЭВМ, называется системой паролей. Недостаток этой системы состоит в том, что пароли могут быть украдены (при этом пользователь может и не заметить потери), забыты или переданы. Для уменьшения опасности связанной с кражей паролей, последние должны часто изменяться, что создает проблемы формирования и распределения паролей. Аналогичный метод, называемый “рукопожатием”, предусматривает успешное выполнение некоторого алгоритма в качестве условия доступа к системе. В процессе “рукопожатия” пользователь должен обменяться с алгоритмом последовательностью паролей (они должны быть названы правильно и в правильной последовательности), хотя сам пользователь не знает алгоритма. Установление подлинности с помощью паролей вследствие своей простоты нашло наиболее широкое применение в вычислительных системах.
Пользователь может иметь при себе стандартный ключ или специальную карточку с нанесенным на нее, например, оптическим, магнитным или другим кодом.
Разработаны знаковые системы, которые основаны на изучении образца подчерка или подписи пользователя. Существуют системы, в которых для установления личности применяют геометрические характеристики руки или спектрограммы голоса пользователя. Также существуют системы, которые используют отпечатки пальцев пользователя и сравнивают их с хранящимися образцами.
Меры защиты против электронного и электромагнитного перехвата.
Подключение к линиям связи может быть осуществлено двумя способами. При пассивном подключении злоумышленник только прослушивает передаваемые данные, тогда как при активном подключении он передает некоторые собственные данные либо в конце законно передаваемых данных, либо вмести них. Основной мерой противодействия подключениям к линиям связи является шифрование сообщений. Кроме того, так как единственными местами, где легко подключиться к линии передачи данных, являются точки внутри помещений, где расположено передающее или приемное оборудование, линии передачи данных и кабельные шкафы должны надежно охраняться. Подключение к внешним участкам линий связи вынуждает вести передачу данных с высокой степенью уплотнения, что является малоэффективной и дорогостоящей операцией.
Вполне реальной угрозой является перехват электромагнитного излучения от ЭВМ или терминала. Правда, вследствие использования режима мультипрограммирования, когда одновременно обрабатывается несколько заданий пользователей, данные, полученные таки путем от большинства вычислительных систем, очень трудно поддаются дешифрованию. Однако, подслушивание терминалов вполне реально, особенно в пределах дальности порядка 6 м. Трудность выполнения этой операции быстро возрастает с расстоянием, так что подслушивание с расстояния, превышающего 45 м, становится крайне дорогостоящей операцией. При использовании более дорогой аппаратуры можно усилить и слабый сигнал. Например, большинство терминалов с ЭЛТ регенерируют отображаемую информацию через короткие интервалы времени. Следовательно, применяя сложные методы, можно совместно обработать и использовать данные нескольких каких циклов генерации.
Основные понятия безопасности компьютерных систем.
Под безопасностью информации понимается “состояние защищенности информации, обрабатываемой средствами вычислительной техники или автоматизированной системы, от внутренних или внешних угроз”.
Целостность понимается как “способность средств вычислительной техники или автоматизированной системы обеспечивать неизменность вида и качества информации в условиях случайного искажения или угрозы разрушения. Согласно руководящему документу Гостехкомиссии России “Защита от несанкционированного доступа к информации. Термины и определения” угрозы безопасности и целостности состоят в потенциально возможных воздействиях на вычислительную систему (ВС), которые прямо или косвенно могут нанести ущерб безопасности и целостности информации, обрабатываемой системой.
Ущерб целостности информации состоит в ее изменении, приводящем к нарушению ее вида или качества.
Ущерб безопасности подразумевает нарушение состояния защищенности содержащейся в ВС информации путем осуществления несанкционированного доступа (НСД) к объектам ВС.
НСД определяется как “доступ к информации, нарушающий правила разграничения доступа с использованием штатных средств, предоставляемых ВС”. Можно ввести более простое определение НСД: НСД заключается в получении пользователем или программой доступа к объекту, разрешение на который в соответствии с принятой в системе политикой безопасности отсутствует.
Реализация угрозы называется атакой.
Человек,
стремящийся
реализовать
угрозу, называется
нарушителем,
или злоумышленником.
Существует
множество
классификаций
видов угроз
по принципам и характеру
их воздействия
на систему, по
используемым средствам, по целям атаки
и т.д. Рассмотрим
общую классификацию
угроз безопасности
ВС по средствам
воздействия
на ВС. С этой
точки зрения
все угрозы могут быть
отнесены к
одному из следующих
классов (рис.4):
1. Вмешательство человека в работу ВС. К этому классу относятся организационные средства нарушения безопасности ВС (кража носителей информации, НСД к устройствам хранения и обработки информации, порча оборудования и т.д.) и осуществление нарушителем НСД к программным компонентам ВС (все способы несанкционированного проникновения в ВС, а также способы получения пользователем-нарушителем незаконных прав доступа к компонентам ВС). Меры, противостоящие таким угрозам, носят организационный характер (охрана, режим доступа к устройствам ВС), а также включают в себя совершенствование систем разграничения доступа и системы обнаружения попыток атак (например, попыток подбора паролей).
2 2
Монитор
Вычислительная среда
Сетевой
адаптер
Компьютер
1Дисковая
подсистема
Клавиатура
31
Рис. 4. Классификация угроз безопасности ВС.
2. Аппаратно-техническое вмешательство в работу ВС. Имеется в виду нарушение безопасности и целостности информации в ВС с помощью технических средств, например, получение информации по электромагнитному излучению устройств ВС, электромагнитные воздействия на каналы передачи информации и другие методы. Защита от таких угроз, кроме организационных мер, предусматривает соответствующие аппаратные (экранирование излучений аппаратуры, защита каналов передачи информации от прослушивания) и программные меры (шифрация сообщений в каналах связи).
3. Разрушающее воздействие на программные компоненты ВС с помощью программных средств. Такие средства называются разрушающими программными средствами (РПС). К ним относятся компьютерные вирусы, троянские кони (или “закладки”), средства проникновения в удаленные системы с использованием локальных и глобальных сетей. Средства борьбы с подобными атаками состоят из программно и аппаратно реализованных систем защиты.
Современные программные угрозы информационной безопасности.
Класс РПС составляют компьютерные вирусы, троянские кони (закладки) и средства проникновения в удаленные системы через локальных и глобальных сетей (рис. 5).
В настоящее
время эволюция
средств РПС
от простейших
программ,
осуществляющих
НСД, к действующим
самостоятельно
удаленным сетевым агентам,
которые представляют
собой настоящие
средства
информационного
нападения.
Компьютерный вирус — суть его
сводится к
тому, что программы
приобретают
свойства, присущие
живым организмам,
причем самые
неотъемлемые — они рождаются,
размножаются,
умирают. Главное условие существования
вирусов
— универсальная
интерпретация
информации в вычислительных системах. Вирус
в процессе
заражения
программы может интерпретировать
ее как данные,
а в процессе
выполнения как исполняемый
код. Этот принцип
был положен
в основу всех
современных
компьютерных систем, использующих
архитектуру
фон Неймана.
Дать формальное определение понятию “компьютерный вирус” очень непросто. Традиционное определение, данное Ф. Коэном, “компьютерный вирус — это программа, которая может заражать другие программы, модифицируя их посредством добавления своей, возможно измененной, копии”, ключевым понятием в определении вируса является его способность к саморазмножению, — это единственный критерий, позволяющий отличить программы-вирусы от остальных программ. При этом “копии” вируса действительно могут структурно и функционально отличаться между собой.
История компьютерных вирусов начинается еще с работ теоретика современных компьютеров фон Неймана. Он разрабатывал модели автоматов, способных к самовоспроизведению, и математически доказал возможность существования таких машин. После этого идея саморазмножающихся программ “витала в воздухе” и время от времени находила свою более или менее адекватную реализацию.
С каждым годом число вирусов растет. Сейчас их уже более 7000. Считается признанным, что в последние годы больше всего вирусов создавалось в СССР, а затем в России и других странах СНГ. Но и в других странах, в том числе в США, значителен урон, наносимый вирусами. В США борьба с вирусами ведется на самом высоком уровне. Вскоре после объявления в 1993 году Белым домом о подключении президента Билла Клинтона и вице-президента Альберта Гора к сети Internet администрация поддержала идею проведения Национального дня борьбы с компьютерными вирусами (National Computer Virus Awareness Day). Такой день отмечается теперь ежегодно. Национальной ассоциацией по компьютерной защите США (NCSA) и компанией Dataquest опубликованы следующие данные по результатам исследований” вирусной проблемы(данные 1993 г.):
опрошенных пострадали от компьютерных вирусов;
предполагаемые потери американского бизнеса от компьютерных вирусов в 1994 году составят около 2 млрд. долларов;
идентифицировано более 2100 компьютерных вирусов;
каждый месяц появляется более 50 новых вирусов;
в среднем от каждой вирусной атаки страдает 142 персональных компьютера, на ее отражение в среднем уходит 2,4 дня;
для компенсации ущерба в 1/4 случаев требовалось более 5 дней.
Начиная с конца 1990 г., появилась новая тенденция, получившая название “экспоненциальный вирусный взрыв”. Количество новых вирусов, обнаруживаемых в месяц, стало исчисляться десятками, а в дальнейшем и сотнями. Поначалу эпицентром этого взрыва была Болгария, затем он переместился в Россию. После 1994 г. темп роста вирусов пошел на убыль, хотя их общее количество продолжает увеличиваться. Это связано с тем, что ОС MS DOS, которая и дает 99% существующих компьютерных вирусов, постепенно сдает свои лидирующие позиции как операционная система для персональных компьютеров, уступая их Windows, OS/2, UNIX и т.п. Данные о динамике роста известных вирусов по годам приведены на рис 6.
Современная ситуация характеризуется двумя моментами: появлением полиморфных вирусов и генераторов (конструкторов) вирусов.
Полиморфные вирусы характеризуются тем, что для их обнаружения неприменимы обычные алгоритмы поиска, так как каждая новая копия вируса не имеет со своим родителем ничего общего. Это достигается шифровкой тела самого вируса и расшифровщиком, не имеющим ни одного постоянного бита в каждом своем экземпляре. На сегодняшний день известно около десятка алгоритмов (вирусов намного больше!) генерации таких расшифровщиков. Появление генераторов вирусов позволяет, задав программе-генератору в виде входных параметров способ распространения, тип, вызываемые эффекты, причиняемый вред, получить ассемблерный текст нового вируса. На сегодняшний
Рис. 5. Типы разрушающих программных средств (РПС).
день известно около пяти таких генераторов вирусов.
Кроме того, вирусы постоянно расширяют свою “среду обитания” и реализуют принципиально новые алгоритмы внедрения и поведения. Так, в 1995 году появились представители, опровергающие ключевые принципы антивирусной защиты — то, что компьютер, загруженный с заведомо чистой системной дискеты, не может содержать вирус; и то, что вирусы не заражают файлы с данными.
Первым появился
вирус, который таким образом
корректирует
конфигурацию
компьютера,
что при попытке
загрузки с
дискеты он все
равно загружается
с зараженного
жесткого диска,
и вирус активизируется
в системе.
Другой вирус,
появившийся
в середине
августа
1995 г. в США и ряде стран Западной Европы, использует
современные
технологии
представления
информации
в виде конгломерата
данных и программ.
Он заражает
документы,
подготовленные
в системе
MS Word for Windows 6.0 —
файлы типа
.DOC. Так как
такие файлы
ежедневно
десятками тысяч
циркулируют в локальных и глобальных сетях, эта
способность вируса обеспечила его мгновенное
распространение
по всему свету
в течение нескольких
дней и
25 августа
он был обнаружен
в Москве. Вирус
написан на
макроязыке пакета
Word. Он переносит
себя в область
глобальных
макросов,
переопределяет
макрос
FileSaveAs и копирует
себя в каждый
файл, сохраняемый
с помощью команды
Save As. При этом
он переводит
файл из категории
“документ”
в категорию
“шаблон”, что
делает невозможным
его дальнейшее
редактирование.
Обнаружить
наличие этого
вируса можно по появлению
в файле
winword6.ini строки
ww6i=1.
Троянский конь — это программа, содержащая в себе некоторую разрушающую функцию, которая активизируется при наступлении некоторого условия срабатывания. Обычно такие программы маскируются под какие-нибудь полезные утилиты. Вирусы могут нести в себе троянских коней или “троянизировать” другие программы — вносить в них разрушающие функции.
Троянские кони представляют собой программы, реализующие помимо функций, описанных в документации, и некоторые другие функции, связанные с нарушением безопасности и деструктивными действиями. Отмечены случаи создания таких программ с целью облегчения распространения вирусов. Списки таких программ широко публикуются в зарубежной печати. Обычно они маскируются под игровые или развлекательные программы и наносят вред под красивые картинки или музыку.
Программные закладки также содержат некоторую функцию, наносящую ущерб ВС, но эта функция, наоборот, старается быть как можно незаметнее, т.к. чем дольше программа не будет вызывать подозрений, тем дольше закладка сможет работать.
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 Год
Рис. 6. Количество компьютерных вирусов в 1986-1996 гг.
В качестве примера приведем возможные деструктивные функции, реализуемые троянскими конями и программными закладками:
1. Уничтожение
информации.
Конкретный выбор объектов
и способов уничтожения зависит только
от фантазии
автора такой
программы и возможностей ОС. Эта функция является общей для троянских
коней и закладок.
2.
Перехват
и передача информации. В качестве примера можно привести реализацию закладки для выделения
паролей, набираемых
на клавиатуре,
при работе утилиты
DISKREET пакета
Norton Utilities ver. 6.0.
3.
Целенаправленная
модификация
кода программы, интересующей нарушителя.
Как правило,
это программы, реализующие функции безопасности
и защиты. Примером реализации
этого случая
является закладка,
маскируемая под прикладную
программу—“ускоритель”
типа
“Turbo Krypton”. Эта
закладка заменяет
алгоритм шифрования
ГОСТ 28147-89,
реализуемой
платой
“Krypton-3” демонстрационный
вариант) другим,
простым и легко
дешифруемым
алгоритмом.
Если вирусы и троянские кони наносят ущерб посредством лавинообразного саморазмножения или явного разрушения, то основная функция РПС, действующих в компьютерных сетях, — взлом атакуемой системы, т.е. преодоление защиты с целью нарушения безопасности и целостности.
В более 80% компьютерных преступлений, расследуемых ФБР, “взломщики” проникают в атакуемую систему через глобальную сеть Internet. Когда такая попытка удается, будущее компании, на создание которой ушли годы, может быть поставлено под угрозу за какие-то секунды.
Этот процесс может быть автоматизирован с помощью специального вида РПС, называемого сетевой червь.
Червями называют вирусы, которые распространяются по глобальным сетям, поражая целые системы, а не отдельные программы. Это самый опасный вид вирусов, так как объектами нападения в этом случае становятся информационные системы государственного масштаба. С появлением глобальной сети Internet этот вид нарушения безопасности представляет наибольшую угрозу, т. к. ему в любой момент может подвергнуться любой из 30 миллионов компьютеров, подключенных к этой сети.
Наиболее известен вызвавший всемирную сенсацию и привлекший внимание к вирусной проблеме инцидент с вирусом-червем в глобальной сети Internet. Второго ноября 1988 года студент Корнелловского университета Роберт Моррис (Robert Morris) запустил на компьютере Массачусетского технологического института программу-червь, которая передавала свой код с машины на машину, используя ошибки в системе UNIX на компьютерах VAX и Sun. В течение 6 часов были поражены 6000 компьютеров, в том числе Станфордского университета, Массачусетского технологического института, Университета Беркли и многих других. Кроме того, были поражены компьютеры Исследовательского института НАСА и Национальной лаборатории Лоуренса в Ливерморе — объекты, на которых проводятся самые секретные стратегические исследования и разработки. Червь представлял собой программу из 4000 строк на языке “С” и входном языке командного интерпретатора системы UNIX. Следует отметить, что вирус только распространялся по сети и не совершал каких-либо разрушающих действий. Однако это стало ясно только на этапе анализа его кода, а пока вирус распространялся, в вычислительных центрах царила настоящая паника. Тысячи компьютеров были остановлены, ущерб составил многие миллионы долларов.
Обычно целью взлома сетей является приобретение нелегальных прав на пользование ресурсами системы. Таким образом, если раньше РПС пассивно вносился в систему, и для его инициализации необходимы были действия пользователя, то сейчас РПС сам проникает в систему и само определяет время и степень своей активности.
Иногда взлому системы предшествует “разведка” — исследование средств защиты атакуемой системы с целью обнаружения слабых мест и выбора оптимального метода атаки. Это могут быть как тривиальные попытки подбора паролей (кстати, 80% атак осуществляются именно этим способом) так и попытки проанализировать имеющееся на атакуемой машине программное обеспечение на предмет наличия в нем “дыр” или “люков”, позволяющих злоумышленнику проникнуть в систему.
Таким образом, возникает специфический вид РПС — программы, осуществляющие проникновение в удаленную систему. Это дает возможность злоумышленнику лично, или с помощью других программ, осуществлять НСД к ресурсам этой системы, нарушать ее безопасность и целостность и т.д.
Изменение требований к безопасности.
В современных условиях чрезвычайно важным является обоснование требований, создание нормативной базы для установления и контроля необходимой степени безопасности. Существует ряд международных стандартов в этой области, среди которых можно назвать ISO-7498-2, Оранжевую книгу и т. тд. Аналогом этих документов в России являются руководящие документы, подготовленные Гостехкомиссией. Согласно этим документам безопасность ВС должна поддерживаться средствами, обеспечивающими: управление доступом, идентификацию и аутентификацию объектов и субъектов, контроль целостности и другие функции защиты. Однако, развитие аппаратных и программных средств ВС, распространение локальных и глобальных сетей, а также появление и эволюция РПС привели к возрастанию количества видов и способов осуществления нарушения безопасности и целостности ВС, что создало предпосылки для изменения требований к средствам защиты.
Рассмотрим изменение
функций перечисленных
средств защиты.
1.
Идентификация и аутентификация.
Возникает
необходимость добавления идентификации и аутентификации
удаленных пользователей
и процессов.
Причем, поскольку
проблема стоит
в глобальном
масштабе, эти
средства должны
обеспечивать
идентификацию
и аутентификацию объектов и субъектов,
находящихся
в разных частях
планеты и
функционирующих
на различных
аппаратных
платформах
и в разных ОС.
В настоящий
момент такие
средства бурно
развиваются.
В качестве
примера можно
указать широко
известную
систему
Kerberos и специальные
интерфейсы, обеспечивающие идентификацию и аутентификацию участников
взаимодействия
типа GSS-API (Generic
Security Service Application Program Interface).
2.
Управление доступом.
Поскольку большинство
компьютеров
является
персональными,
разграничение
прав локальных
пользователей
в значительной
степени потеряло
свою актуальность.
Задача разграничения
доступа теперь
сводится к
ограничению
доступа из
сети к ресурсам,
имеющимся в
ВС, и к защите
ресурсов,
принадлежащих
пользователю,
но расположенных
на удаленных
машинах.
3.
Контроль целостности. Понятие контроля
целостности
теперь должно
включать в себя защиту от
проникновения
в систему
злоумышленника
или РПС, в том
числе через
сеть. В защите
каналов связи
на первое место
выступает не
шифрование
информации
с целью защиты
от перехвата,
а защита сетевого
соединения
от атаки со
стороны злоумышленника или РПС. В качестве
примера можно привести
распространенные
в последнее
время системы Firewall, защищающие локальные сети от проникновения
в них со стороны
Internet.
4.
РПС потребовали
от защиты совершенно
новой функции,
а именно, механизмов,
обеспечивающих
безопасность
и целостность
системы в условиях
возможного
появления в
ней программ,
содержащих
РПС.
Основные типы угроз вычислительным системам.
Существуют три различных типа угроз относящиеся к раскрытию, целостности или отказу служб вычислительной системы.
Угроза раскрытия заключается том, что информация становится известной тому, кому не следовало бы ее знать. В терминах компьютерной безопасности угроза раскрытия имеет место всякий раз, когда получен доступ к некоторой секретной информации, хранящейся в вычислительной системе или передаваемая от одной системы к другой. Иногда в связи с угрозой раскрытия используется термин “утечка”.
Угроза целостности включает в себя любое умышленное изменение информации, хранящейся в вычислительной системе или передаваемой из одной системы в другую. Когда взломщики преднамеренно изменяют информацию, говорят, что целостность этой информации нарушена. Целостность также будет нарушена, если к несанкционированному изменению приводит случайная ошибка. Санкционированными изменениями являются те, которые сделаны определенными лицами с обоснованной целью (таким изменением является периодическая запланированная коррекция некоторой базы данных).
Угроза отказа служб возникает всякий раз, когда в результате преднамеренных действий, предпринятых другим пользователем, умышленно блокируется доступ к некоторому ресурсу вычислительной системы. То есть, если один пользователь запрашивает доступ к службе, а другой предпринимает что-либо для недопущения этого доступа, мы говорим, что имеет место отказ службы. Реально блокирование может быть постоянным, так чтобы запрашиваемый ресурс никогда не был получен, или оно может вызвать только задержку запрашиваемого ресурса, достаточно долгую для того, чтобы он стал бесполезным. В таких случаях говорят, что ресурс исчерпан.
Политика безопасности подразумевает множество условий, при которых пользователи системы могут получить доступ к информации и ресурсам. Таким образом, политика безопасности определяет множество требований, которые должны быть выполнены в конкретной реализации системы.
Очевидно, для проведения желаемой политики безопасности в системе должны присутствовать соответствующие механизмы. В большинстве случаев механизмы безопасности содержат некоторые автоматизированные компоненты, зачастую являющиеся частью базового вычислительного окружения (операционной системы), с соответствующим множеством процедур пользователя и администратора.
Одним из важнейших аспектов проблемы информационной безопасности компьютерных систем является противодействие РПС. Существуют несколько подходов к решению этой задачи:
-
создание специальных
программных
средств, предназначенных
исключительно
для поиска и
ликвидации
конкретных
видов РПС(типа
антивирусных
программ);
-
проектирование
ВС, архитектура
и модель безопасности
которых либо
в принципе не
допускает
существование
РПС, либо ограничивает
область их
активности
и возможный
ущерб;
- создание и применение методов и средств анализа программного обеспечения на предмет наличия в них угроз информационной безопасности ВС и элементов РПС.
Первый подход не может привести к
удовлетворительным
результатам,
т. к. борется
только с частными
проявлениями
сложной проблемы.
Второй подход
имеет определенные
перспективы,
но требует
серьезной
переработки
концепции ОС
и их безопасности,
что связано
с огромными затратами.
Наиболее эффективным представляется
третий подход,
позволяющий
путем введения
обязательной
процедуры анализа безопасности
программ, достаточно
надежно защитить
наиболее важные системы от РПС. Процедуру
анализа программного
обеспечения
на предмет
наличия в них
угроз информационной
безопасности
ВС называются
анализом безопасности программного
обеспечения. Данный подход требует разработки
соответствующих
теоретических
моделей программ,
ВС и РПС, создания
методов анализа
безопасности
и методик их
применения.
Анализ и классификация удаленных атак на компьютерные сети
Основой любого анализа безопасности компьютерных систем (КС) является знание основных угроз, присущих им. Для успеха подобного анализа представляется необходимым выделение из огромного числа видов угроз обобщенных типов угроз, их описание и классификация.
Безопасность компьютерной сети должна подвергаться анализу — выделение в отдельный класс атак, направленных на компьютерные сети. Данный класс называется — класс удаленных атак. Этот подход к классификации представляется правомочным из-за наличия принципиальных особенностей в построении сетевых ОС. Основной особенностью любой сетевой операционной системы является то, что ее компоненты распределены в пространстве и связь между ними физически осуществляется при помощи сетевых соединений (коаксиальный кабель, витая пара, оптоволокно и т.д.) и программно при помощи механизма сообщений. При этом все управляющие сообщения и данные, пересылаемые одной компонентой сетевой ОС другой компоненте, передаются по сетевым соединениям в виде пакетов обмена. Эта особенность и является основной причиной появления нового класса угроз — класса удаленных атак. Основная причина нарушения безопасности сетевой ОС — недостаточная идентификация и аутентификация ее удаленных компонент.
Классификация удаленных атак на сети ЭВМ.
Удаленные атаки можно классифицировать по следующим признакам:
1.По характеру воздействия:
- активное
- пассивное
Под активным воздействием на сетевую систему понимается воздействие, оказывающее непосредственное влияние на работу сети (изменение конфигурации сети, нарушение работы сети и т.д.) и нарушающее политику безопасности, принятую в системе. Практически все типы удаленных атак являются активными воздействиями. Основная особенность удаленного активного воздействия заключается в принципиальной возможности его обнаружения (естественно, с большей или меньшей степенью сложности).
Пассивным воздействием на сетевую систему называется воздействие, которое не оказывает непосредственного влияния на работу сети, но может нарушать ее политику безопасности. Именно отсутствие непосредственного влияния на работу сети приводит к тому, что пассивное удаленное воздействие практически невозможно обнаружить. Единственным примером пассивного типового удаленного воздействия служит прослушивание канала в сети.
По цели воздействия
- перехват информации
- искажение информации
Основная цель практически любой атаки — получить несанкционированный доступ к информации. Существуют две принципиальных возможности доступа к информации: перехват и искажение. Возможность перехвата информации означает получение к ней доступа, но невозможность ее модификации. Примером перехвата информации может служить прослушивание канала в сети.
В этом случае имеется несанкционированный доступ к информации без возможности ее искажения.
Возможность
к искажению
информации
означает полный
контроль над
информационном
потоком. То
есть, информацию можно не только
прочитать, как
в случае перехвата,
а иметь возможность
ее модификации.
Примером удаленной
атаки, позволяющей
модифицировать
информацию,
может служить
ложный сервер.
Рассмотренные
выше три классификационных
признака инвариантны
по отношению
к типу атаки,
будь то удаленная
или локальная
атака. Следующие
классификационные
признаки (за
исключением
3), которые
будут рассмотрены
ниже, имеют
смысл только
для удаленных
воздействий.
... его имени и пароля и выдает разрешение на доступ к серверу выдачи разрешений, который, в свою очередь, дает “добро” на использование необходимых ресурсов сети. Однако данная модель не отвечает на вопрос о надежности защиты информации, поскольку, с одной стороны, пользователь не может посылать идентификационному серверу свой пароль по сети, а с другой – разрешение на доступ к обслуживанию в сети ...
... питания, уничтожители бумажных документов Заключение Цель курсового исследования достигнута путём реализации поставленных задач. В результате проведённого исследования по теме "Методы защиты информации в телекоммуникационных сетях" можно сделать ряд выводов: Проблемы, связанные с повышением безопасности информационной сферы, являются сложными, многоплановыми и взаимосвязанными. Они ...
... криптографические; на рабочих станциях выполняется только WWW просмотрщик и программы интерпретации Web-документов сервера, которые загружаются непосредственно с сервера. Принципы безопасности. Решение проблемы защиты информации состоит в использовании организационно-технологических (административных), технических и программных мер, а так же в профилактической работе среди пользователей для ...
... части локальной сети не позволяют останавливаться на известных достигнутых результатах и побуждают на дальнейшее исследование в дипломной работе в направлении разработки локальной сети с беспроводным доступом к ее информационным ресурсам, используя перспективные технологии защиты информации. 2. Выбор оборудования, для перспективных технологий СПД 2.1 Выбор передающей среды Зачастую перед ...
0 комментариев