1.1.4 Системный контроллер КР580ВК38.

Микросхема КР580ВК38 выполняет функцию системного контроллера и шинного формирователя, осуществляет формирование управляющих сигналов обращения к ОЗУ или к устройствам ввода/вывода (УВВ) и обеспечивает прием и передачу 8-разрядной информации между шиной данных микропроцессора и системной шиной.

Формирование сигналов I/OW, MEMW в данной микросхеме происходит относительно сигнала STSTB “Строб состояния”, что позволяет при применении в микропроцессорной системе микросхемы КР580ВК38 использовать ЗУ и УВВ с более широким диапазоном быстродействия. . Двунаправленный шинный формирователь осуществляет буферирование 8-разрядной шины данных и автоматический контроль направления передачи данных.

Подключение системного контроллера к шине данных микропроцессора осуществляется с помощью двунаправленных выводов DO—D7, к системной шине—с помощью двунаправленных выводов DBO—DB7. При необходимости с помощью сигнала BUSEN “Управление системной шиной” выводы DBO—DB7 системного контроллера могут быть переведены в состояние “Выключено”.

Таблица 4- Назначение выводов ИМС КР580ВК38.

Номер вывода

Обозначение

Назначение

6, 8, 10, 12, 15, 17, 19, 21 DO—D7 Шина данных
5, 7, 9, 11, 13, 16, 18, 20 DBO—DB7 Системная шина
1 STSTB Строб состояния
2 HLDA Подтверждение захвата
3 WR Запись
4 DBIN Прием
14 GND Общий
22 BUSEN Управление системной шиной
23 INTA Подтверждение прерывания
24 MEMR Чтение памяти
25 I/OR Чтение УВВ
26 MEMW Запись в память
27 I/OW Запись в УВВ
28 Ucc +5 В

Регистр состояния выполнен на шести D-триггерах и предназначен для хранения информации о состоянии микропроцессора, поступающей по шине данных DO—D7. Запись в регистр состояния осуществляется по сигналу STSTB, поступающему в начале каждого машинного цикла.

Декодирующая матрица в зависимости от режима работы микропроцессора, зафиксированного в регистре состояния, и входных управляющих сигналов HLDA, WR, DBIN формирует сигнал INTA “Подтверждение прерывания” или сигналы чтения/записи при обращении к ОЗУ или УВВ.

Рисунок 8- Интегральное исполнение ИМС КР580ВК38.

Рисунок 9- Структурная схема ИМС КР580ВК38.

1.1.5 Буферный регистр.

Микросхема КР580ИР82 представляет собой 8-разрядный буферный регистр, предназначенный для ввода и вывода информации со стробированием. Она может ильзоваться как в микропроцессорных системах, построенных на микросхемах серии КР580, так и в других вычислительных системах и устройствах дискретной автоматики.

Микросхема КР580ИР83 не содержит инвертирующие выходы. Данная микросхема имеет восемь триггеров D-типа и восемь выходных буферов, имеющих на выходе состояние “Выключено”. Управление передачей информации осуществляется с помощью сигнала STB “Строб”.

Рисунок 10- Структурная схема ИМС КР580ИР82.

При поступлении на вход STB сигнала высокого уровня осуществляется не тактируемая передача информации от входа DI до выхода DO. При подаче на вход STB сигнала низкого уровня микросхема хранит информацию предыдущего такта; при подаче на вход STB положительного перепада импульса происходит “защелкивание” входной информации. Выходные буферы микросхемы КР580ИР82 управляются сигналом ОЕ “Разрешение выхода”. При поступлении на вход ОЕ сигнала высокого уровня выходные буферы переводятся в состояние “Выключено”. Назначение выводов КР580ИР82 приведено в таблице 5.

Таблица 5- Назначение выводов КР580ИР82.

Номер вывода

Обозначение

Назначение

1-8

DIO—DI7 Входы регистра
9 ОЕ Разрешение выхода
10 GND Общий
11 CTD Строб
19—12 DOO-D07 Выходы регистра
20 Ucc +5 В

Электрические параметры РЕГИСТРА:

1. Uпит (напряжение питания) - 5 В

2. Выходное напряжение питания низкого уровня ( Uвых низ ур ): < 0.45 В

3. Выходное напряжение питания высокого уровня ( Uвых выс ур ): > 2.4 В

4. tзадер (Время задержки распространения информационного сигнала на выходе относительно информационного сигнала на входе < 30 нс

Рисунок 11- Интегральное исполнение ИМС КР580ИР82.

1.1.6 Оперативное запоминающее устройство КР537РУ8.

Микросхема представляет собой оперативное запоминающее устройство емкостью 16К

Вывод

 Ус чт.

Ввод

Ус зап.

Дешифратор адреса столбцов.

Рисунок 12- Организация ИМС ОЗУ.

Оперативные ЗУ предназначены для хранения переменной информации и имеют практически одинаковое быстродействие при считывании и записи. По способу хранения информации ОЗУ делятся на два основных типа: статические и динамические. Статические запоминающие элементы могут хранить информацию сколь угодно долго, пока подается электропитание. Динамические запоминающие элементы, напротив, способны хранить информацию только непродолжительное время. Поэтому для хранения информации её нужно периодически обновлять, или, другими словами регенерировать. Для обоих типов оперативных ЗУ существует множество различных схем. Их разнообразие отражает не

только множество технологий (ТТЛ, n-МОП, КМОП, ЭСЛ и т.д.) и конструкций, но ещё и разнообразие требований, предъявляемым к модулям памяти в отношении быстродействия,

емкости, плотности упаковки элементов и потребляемой мощности.

Статические ЗУ с произвольной выборкой (Random Access Memory) строятся на триггерах с непосредственными связями, которые могут неограниченно долго хранить информацию при включенном питании. Эти ОЗУ очень просты в эксплуатации, обладают высокой помехоустойчивостью, не требуют дорогих и сложных схем обслуживания, благодаря чему достигается умеренная стоимость всей системы памяти. При интегральной реализации статических ОЗУ используются два вида запоминающих матриц: накопители повышенного быстродействия (время цикла менее 100 нс) без схем дешифрации со средней степенью интеграции в БИС (до 256 бит); накопители среднего быстродействия (время цикла 300-1000 нс) с повышенной информационной ёмкостью

Рисунок 13- словарная организация БИС ОЗУ.

от 256 до 16384 бит со схемами дешифрации.Статические ОЗУ в зависимости от принципа построения накопителя имеют словарную или матричную организацию. При словарной организации ОЗУ обращение производится одновременно к запоминающим элементам нескольких разрядов, соответствующих некоторой части слова или всего слова. Основными достоинствами ОЗУ со словарной организацией является простота базовой ячейки, и минимальное число шин управления, необходимых для реализации накопителя. Важное значение имеет также и то обстоятельство, что при словарной

организации матрицы БИС в виде m одноразрядных слов удается обеспечить минимальную мощность рассеяния в режиме записи и считывания.

Обобщенная структура БИС со словарной организацией матрицы приведена на рисунке 13. Код адреса n-разрядного слова подается на адресный дешифратор, который выбирает нужное слово. Адресный усилитель возбуждает соответствующую словарную шину и слово, код которого поступает на входные разрядные шины, записывается в выбранную строку матрицы согласно коду адреса. Аналогично, с помощью разрядных усилителей производится считывание выбранного слова в выходной регистр.

При матричной организации БИС возможно обращение к любому ЗЭ накопителя независимо от других элементов, расположенных на той же БИС. Микросхемы с матричной организацией называют также ОЗУ с разрядной организацией или с двукоординатной выборкой.

Обобщенная структурная схема БИС ОЗУ с матричной организацией приведена на рисунке 14. Код адреса ячейки поступает на адресные дешифраторы, которые выбирают в накопителе нужную строку и столбец. Выборка ячейки происходит по принципу

совпадения сигналов возбуждения соответствующих шин по двум координатам. При матричной организации ОЗУ часто используется метод выборки столбца с помощью селектора данных. Для чтения по линиям , соответствующим столбцам, содержимое всех элементов строки посылается в селектор, который выбирает бит одного столбца в соответствии с заданным адресом и выдает этот бит на выходную линию данных. Специальные схемы в запоминающем элементе осуществляют как доминирование

Рисунок 14- Матричная организация БИС ОЗУ.

поступающего извне значения, так и сохранение этого значения в ЗЭ выбранной строки. При разработке ОЗУ большой ёмкости (≥16 Кбит) применяется микросхемы ОЗУ динамического типа, в которых увеличение ёмкости достигается за счет уменьшения числа элементов и как следствие уменьшение занимаемой площади. Уменьшение числа элементов происходит при использовании динамических запоминающих ячеек, в которых информация хранится в виде заряда соответствующих ёмкостей. Ток утечки обратно смещенного p-n перехода имеет значение не более 10-10 А, а ёмкость накопительного конденсатора не превышает 0,1-0,2 пФ, следовательно постоянная времени разряда конденсатора t≥1 мс. Поэтому для выдачи состояния низкого или высокого уровня сигнала на выходе БИС необходимо осуществлять периодическое восстановление информации (или её регенерацию) с периодом tREF ≤1÷2 мс.

Таким образом, главные отличия динамических устройств памяти от статических заключаются в следующем: отсутствует источник питания запоминающих ячеек; необходимы логические схемы, обеспечивающие регенерацию ячеек; обрамление требует более сложных схем; максимальная простота схемы накопителя, для обеспечения минимально занимаемой площади; меньшая потребляемая мощность.

Итак, проведя сравнительный анализ принципов работы и основных характеристик статических и динамических устройств памяти выберем ОЗУ статического типа со словарной организацией К537РУ8 условное обозначение которой и наименование выводов показаны на рисунке 15.

 Данная ИМС содержит матрицу запоминающих элементов 2048*8 , представляющую собой накопитель ёмкостью 16384 бит (16 Кбит), дешифраторы адреса строк (DCK) и столбцов (DCS), блок управления СИ, адресные и выходные формирователи и разрядные усилители записи-считывания. Режим работы устанавливается с помощью сигналов CS1, CS2, W/R

 

Параметры микросхемы:

Организация 2К*8;

Ucc 5В;

Т цикла 200нс;

Сн 50пФ;

Свх 10пФ;

Тип корпуса 239.24-2;

Таблица 6- Истинность микросхемы KP537PУ8.


CS1vCS2

WR/RD

А0…А10

DIO0…DIO7

Режим работы

1

Х X Z Хранение

0

0 А D0…D7 Запись

0

1 А D0…D7 Считывание

Рисунок 15- Интегральное исполнение ИМС КР537РУ8.

1.1.7 Постоянное программируемое запоминающее устройство КР556РТ17.

В настоящее время разработаны и выпускаются ПЗУ нескольких типов:

- ПЗУ масочного типа;

- программируемые ПЗУ;

- электрически программируемые ПЗУ;

- электрически программируемые ПЗУ с ультрафиолетовым стиранием.

Масочные ПЗУ – микросхемы, в которых информация записывается при изготовлении с фиксированным рисунком межсоединений, определяемым маской (шаблоном). В ПЗУ запоминающие элементы объединены в двухкоординатную матрицу, образованную при пересечении совокупности входных (чисел) и выходных (разрядов) информационных шин. В местах пересечений шин могут быть включены диоды, биполярные транзисторы и МОП-транзисторы. Наибольшее распространение получили ПЗУ на МОП-транзисторах ввиду технологической простоты и связанной с этим возможностью получения высокой степени интеграции, а так же малой потребляемой мощностью. Запись информации в масочное ПЗУ производится с помощью сменного заказного фотошаблона. Документом, определяющим хранимую в накопителе информацию, является карта заказа на данную микросхему. Изготовление маски довольно дорого, но с помощью одной маски можно запрограммировать любое число модулей памяти. Следовательно, масочные ПЗУ рентабельны при крупносерийном производстве.

Постоянные запоминающие устройства, допускающие однократное программирование у заказчика – это микросхемы, в которых состояние ячеек можно задать уже после изготовления устройства (создав либо разрушив перемычки). Наибольшее распространение получили перемычки в виде плавких вставок (например из нихрома или поликремния), которые можно избирательно пережечь, с помощью внешнего источника тока. Накопитель ППЗУ представляет собой матрицу на биполярных транзисторах с плавкими перемычками, включенными последовательно с эмиттерами транзисторов, т.е функциональная схема БИС ППЗУ аналогична схеме масочного ПЗУ.

Программирование БИС ППЗУ разных серий производится на специальных устройствах-программаторах. В табл.1 приведены некоторые типы отечественных программаторов

Постоянные запоминающие устройства, допускающие многократное программирование и сохраняющие информацию при отключении питания (Errasеble-Programmable-Read-Only-Memory – стираемая программируемая память только со считыванием) – микросхемы, использующие элементы коммутации, которые можно устанавливать в одно (замкнутое) состояние избирательно, а в другое (разомкнутое) – коллективно. Программирование таких ПЗУ сводится сначала к коллективной установке всех перемычек в одно состояние, что равносильно стиранию ранее записанной информации и последующей поочередной установки нужных перемычек в другое состояние.

Электрически программируемые ПЗУ характеризуются сочетанием положительных качеств ПЗУ – энергонезависимым хранением информации и высокой удельной плотностью её записи с возможной многократной сменой информации, как в ОЗУ.

Микросхемы со стиранием ультрафиолетом представляют собой РПЗУ на основе лавинно-инжекционных МОП-транзисторов с плавающим затвором, в которых запись информации осуществляется электрическим способом, а для стирания информации требуется облучение ультрафиолетовым излучением.

Мы для своего микропроцессорного комплекта выберем наиболее простой тип ПЗУ это программируемое постоянное запоминающее устройство КР556РТ17 емкостью 4 кбит (512 х 8) с тремя состояниями на выходе;

Таблица 7- Виды программаторов и их возможности.


Рисунок 16- Интегральное исполнение ИМС КР556РТ17.


Информация о работе «Микропроцессорная система КР580»
Раздел: Информатика, программирование
Количество знаков с пробелами: 24421
Количество таблиц: 10
Количество изображений: 0

Похожие работы

Скачать
27562
20
25

... 14, 15 XTAL1, XTAL2 Выходы для подключения резонатора 16 Ucc1 Напряжение питания +5В 1.3 Системный контроллер КР580ВК28 Микросхема КР580ВК28 - системный контролер, применяется в микропроцессорных системах на базе микропроцессора КР580ВМ80 для формирования управляющих сигналов. Системный контролер формирует управляющие сигналы по сигналам состояния микропроцессора при обращении к ЗУ: RD ...

Скачать
119324
15
0

... напряжения. У ЦАП с токовым выходом этот параметр в большой степени зависит от типа выходного ОУ. Виды ЦАП Существуют последовательные и параллельные ЦАП. Последовательные –- используются в микропроцессорных системах, если не требуется высокое быстродействие. Среди параллельных - наиболее просты ЦАП с суммированием весовых токов    Большинство схем параллельных ЦАП основано на суммировании ...

Скачать
47836
1
11

... , а при открытии клапана 17, наоборот, уменьшается. Когда оба клапана закрыты, разрежение в полости 19 остается неизменным. Рисунок 4. Структурная схема микропроцессорной системы управления сцеплением В зависимости от разрежения в полости 19. сервокамеры меняется положение ее штока 21, и соответственно регулируется момент Мс, передаваемый сцеплением. Из рассмотрения зависимости Мс от ...

Скачать
25415
9
0

... Следовательно, не возникает трудностей, если при построении микропроцессорной системы используются также некоторые микросхемы ТТЛ-технологии, имеющие широкое применение. Микросхемы комплекта КР580 характеризуются следующими параметрами: температурный диапазон: -10...+70 градусов по Цельсию; потребляемая мощность: 0,7 Вт; напряжение питания: КР580ВМ80А +5В, +12В, -5В, остальные БИС ...

0 комментариев


Наверх