3.4.1.2. Программный способ

 

При программном способе псевдослучайные числа нам необходимо сформировать методом умножения.

Суть метода: выбирается два n - разрядных числа X1 и X2. X1><0, X2><0. Затем X1 умножаем на X2 и получаем некоторое значение Y , у которого 2n - разрядов: Y=X1*X2. Из 2n - разрядного Y выбираем n - разрядное Х1 и Х2 и вновь полученные Х1, Х2 умножаем друг на друга. Далее все повторяется до тех пор пока не будет сформировано необходимое количество чисел.

Программа формирования ГСК на основе метода умножения приведена в Приложении № 2.

Полученные числа записываются в файл vi_gpsc1.dat и анализируются с помощью программы analize.

Определение числовых характеристик

Характеристика Теоретич. значение Статистич. значение
1 Мин.значение совокуп. 0.00068
2 Макс.значение совокуп 0.99995
3 Математич. ожидание 0.5 0.4928
4 Дисперсия 0.083 0.07822
5 Сред.квад.отклонение 0.1887 0.2796

Аппроксимация статистического распределения теоретической функцией


Проверка соответствия чисел последовательности требуемому распределению дает следующие результаты:

Критерий Хи-Квадрат:

Х2=12.9

С доверительной вероятностью 0.166 можно утверждать о согласованности теоретических и статистических данных.

Критерий Колмогорова:

Максимальная разность max| F(x)-F*(x) | = 0.0885

С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.

Определение характеристик корреляции

r(t)


1

0 t

5

Рис. 3. График изменения коэфф.

корреляции

Вывод:

Полученная по методу умножения последовательность СЧ, имеющих равномерный закон распределения удовлетворяет предъявленным требованиям по качеству и может быть использован в задачах моделирования, т. к.:

1) есть согласованность по критерию Колмогорова

2) числа не зависят друг от друга, о чем говорит график (Рис. 3.)

3.4.1.3. Выбор генератора РРПСЧ

 

Эффективность статистического моделирования и достоверность полученных результатов находятся в прямой зависимости от качества используемых в модели случайных последовательностей. Под качеством здесь понимается соответствие чисел последовательности заданной функции распределения (плотности распределения) и ее параметрам: М.О. и т.д.; независимость чисел последовательности друг от друга, т.е. отсутствие автокорреляции в последовательности случайных чисел.

Выберем генератор РРПСЧ, который используется для генерации времени между поступлениями заявок от пользователей.

Последовательность чисел, полученных аппаратным способом и хранящихся в файле vihod3.dat не совсем удовлетворяет предъявленным требованиям по качеству, т.к. нет согласия по критериям теоретических и статистических данных.

В пункте 3.4.1.2. мы делая вывод уже говорили о том, что генератор РРПСЧ сформированный программным способом (по методу умножения) можно использовать в задачах моделирования, но для простоты будем использовать встроенную функцию random( ), простую в программировании и имеющую хорошие характеристики.

3.4.2. Моделирование случайных воздействий,

имеющих неравномерное распределение

 

Для стохастической модели требуются числа распределенные по нормальному закону и по экспоненциальному закону.

Напишем функции формирования чисел по требуемому закону распределения. Эти числа запишем в файл. Оценим качество полученных последовательностей ПСЧ, пользуясь автоматизированной системой analize. Проанализируем результаты исследования и сделаем вывод о качестве каждой последовательности и о возможности их использования в стохастической модели.

Сведения о непрерывных случайных величинах

Закон распределения случайных величин

Нормальный

N(m,s)

Экспоненц-ый

s(1,1/l)=Э(l)

Аналитическое выражение плотности вероятности f(x)

1 -(x-m)

 f(x)=-------- e 2s

 sÖ2p

-lx

f(x)=l e

Определяющие параметры

| m | <

s > 0

l > 0
Числовые m характеристики  D

m

s

1/l

 1/l

Алгоритм получения случайной величины

______

xi=Ö-2 ln z1 cos2p z2

xi+1=Ö-2 ln z1 cos2p z2

( m=0; D=1 )

1

xi=- ---- ln zi

l

Область значений случайной величины

Исследование последовательности нормально распределенных ПСЧ.

(Программа в приложении № 3)

Определение числовых характеристик

 

Характеристика

Теоретическое

значение

Статистическое

значение

1 Мин.знач.совокупности 11 12.31
2 Макс.знач.совокуп-ти 24 25.23
3 Мат. ожидание 16 16.02
4 Дисперсия 2 2.07
5 Сред.квадр.отклонение 1 1.439
6 Коэфф.ассиметрии 0 0.35
7 Эксцесс 0 2.716

Аппроксимация стат. распределения теоретической функцией.


Проверка соответствия чисел последовательности требуемому распределению дает следующие результаты:

Критерий Хи-Квадрат:

Х2=0.0000813

С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.

Критерий Колмогорова:

Максимальная разность max| F(x)-F*(x) | = 0.0823

С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.

Определение характеристик корреляции

r(t)

1

0 t

5

Рис. 4. График изменения коэффициента корреляции.

Вывод:

Полученная последовательность ПСЧ, имеющая нормальный закон распределения, удовлетворяет предъявленным требованиям по качеству и может быть использована в задачах моделирования, т. к.

- числовые характеристики имеют незначительное отклонение от

теоретических значений,

- по критериям согласия получены удовлетворительные значения

доверительных вероятностей,

- числа последовательности достаточно независимы, о чем свидетельствует

график (Рис. 4.)

Последовательности ПСЧ для 2-го и 3-го пользователей генерируются аналогично, с той лишь разницей, что мат. ожидание у них 17 и 18 соответственно.

Исследование последовательности экспоненциально распределенных ПСЧ

 (Программа в приложении № 3)

Определение числовых характеристик

 

Характеристика

Теоретическое

значение

Статистическое

значение

1 Мин.знач.совокупности 0.5 0.8
2 Макс.знач.совокуп-ти 3.5 2.358
3 Мат. ожидание 0.8 1.06
4 Дисперсия 0.08 0.066
5 Сред.квадр.отклонение 0.5 0.2575
6 Коэфф.ассиметрии 0 1.682
7 Эксцесс 0 1.097

Аппроксимация стат. распределения теоретической функцией


Проверка соответствия чисел последовательности требуемому закону распределения дает следующие результаты:

Критерий Хи-Квадрат:

Значение Х2=2310

С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.

Критерий Колмогорова:

Максимальная разность max| F(x)-F*(x) | = 0.023

С доверительной вероятностью 0.91 можно утверждать о согласованности теоретических и статистических данных.

 

Определение характеристик корреляции

r(t)

1

0 t

 5

Рис. 5. График изменения коэффициента корреляции.

 

Вывод:

Полученная последовательность ПСЧ, имеющих экспоненциальный закон распределения, удовлетворяет предъявленным требованиям по качеству и может быть использована в задачах моделирования, т. к.

- числовые характеристики имеют незначительное отклонение от

теоретических значений,

- по критериям согласия получены удовлетворительные значения

доверительных вероятностей,

- числа последовательности достаточно независимы, о чем свидетельствует

график (Рис. 5.)


Информация о работе «Моделирование ЭВМ»
Раздел: Компьютерные науки
Количество знаков с пробелами: 29056
Количество таблиц: 8
Количество изображений: 0

Похожие работы

Скачать
33545
0
0

... Математическое моделирование — метод изучения объекта исследования, основанный на создании его математической модели и использовании её для получения новых знаний, совершенствования объекта исследования или управления объектом. Математическое моделирование можно подразделить на аналитическое и компьютерное (машинное) моделирование. При аналитическом моделировании ученый — теоретик получает ...

Скачать
56724
13
5

... схема алгоритма или граф-схема алгоритма является аналогом схемы алгоритма, отличается от последней большей формализацией, несколько другим изображением блоков начала и конца. Поскольку ГСА предложена для алгоритмов операций ЭВМ, то в ней нет средств для отражения ввода-вывода. Вместо блоков в ГСА используются вершины: начальные Y0 , конечные Yк, операторные вершины Y1,Y2, … , условные вершины ...

Скачать
14310
0
1

... и вычитаются или когда значение физического типа умножается на целое. Допускается также деление на целое, но в этом случае может выполняться округление результата. Средства обеспечения параллельности в работе ВС Если говорить про операторную часть проблемно-ориентированной компоненты, то условно ее можно разделить на средства поведенческого описания аппаратуры (параллельные процессы и средства ...

Скачать
125526
9
36

... комплекса является задание на дипломную работу утвержденное приказом по академии № 07-17 от 07.02.2003 года. Наименование организации: ДГМА. Тема разработки: "Моделирование тепловых процессов при наплавке порошковой проволокой". Специальная часть: "Программно-методический комплекс для расчета температурного поля вылета порошковой проволоки". Назначение разработки Функциональное назначение ...

0 комментариев


Наверх