1. Пользователь предъявляет свой идентификатор (имя) ID.
2. Если ID не совпадает ни с одним IDi, зарегистрированным в компьютерной системе, то идентификация отвергается - пользователь не допущен к работе, иначе (существует IDi = ID) устанавливается факт "пользователь, назвавшийся пользователем i, прошел идентификацию".
3. По IDi выделяется Si.
4. Субъект аутентификации запрашивает у пользователя аутентификатор К.
5. Субъект аутентификации вычисляет Y = F(Si, К).
6. Субъект аутентификации производит сравнение Ei и Y. При совпадении фиксируется событие "пользователь успешно аутентифицирован в КС", в противном случае аутентификация отвергается - пользователь не допущен к работе.
Вторая схема аутентификации применяется в ОС Unix. В качестве идентификатора ID используется имя пользователя (запрошенное по Login), в качестве Ki- пароль пользователя (запрошен по Password), функция F представляет собой алгоритм шифрования DES. Эталоны для идентификации и аутентификации содержатся в файле Etc/passwd.
Утверждение (о подмене эталона). Если пользователь имеет возможность записи объекта хранения эталона, то пользователь может быть идентифицирован и аутентифицирован (в рамках рассмотренных схем), как любой пользователь[1].
Доказательство. Пусть имеется пользователь i. Покажем, что он может выдать себя за любого пользователя j. Возможность записи в объект, содержащий эталоны, означает возможность замены любой записи на произвольную. Пользователь i меняет j-ю запись на свои параметры IDi и Ei (или дополнительно и Si). При следующей процедуре идентификации он будет опознан как пользователь j (по построению и описанию схем). Утверждение доказано.
Смысл данного утверждения состоит в том, что возможность записи объекта хранения эталонов должны иметь только субъекты специально выделенного пользователя компьютерной системы, отвечающего за управление безопасностью.
Заметим, что необходимым требованием устойчивости схем аутентификации к восстановлению информации Ki является требование случайного равновероятного выбора Кi из множества возможных значений. Это требование, как уже было указано, автоматически снижает ценность систем парольной аутентификации, поскольку в них выбор аутентифицирующей информации происходит из небольшого множества осмысленных слов, мощность которого определяется энтропией соответствующего языка.
Рассмотрим теперь иерархию хранения и использования ключей при условии наличия в компьютерной системе криптографической подсистемы, включающей алгоритм шифрования Е, алгоритм расшифрования D и исходные объекты O1, ..., Оn, зашифрованные на ключах ki, ..., kn. Результатом зашифрования исходных объектов являются объекты доступа в системе: Y1, .... Yn. При этом Yj = E(0j, kj), Oj = D(Yj, kj). Пусть владельцу ключа Kj необходимо обеспечить доступ к объекту Yj (доступ подразумевает возможность расшифрования Yj). Для этого он должен знать ключ kj. Очевидно, что требуются дополнительные объекты хранения зашифрованных ключей (табл. 2.3). С учетом того, что к объекту Yj могут иметь доступ несколько пользователей, объект уj может содержать несколько подобъектов вида E(kj, Km), где Km - ключ m-ro пользователя.
Таблица 2.3
Объект доступа | Дополнительный объект |
Y1 | Y1=E(k1, Кj) |
Y2 | Y2= E(k2, Кj) |
… | … |
Yn | Yn=Е(kn,Кn) |
Алгоритм доступа
1. Пользователь i идентифицируется и аутентифицируется в компьютерной системе. При положительном исходе ключ пользователя Кj доступен субъектам (программам) системы, регулирующим доступ к объектам.
2. Пользователь производит доступ к зашифрованному объекту Yj. Выполняется поиск дополнительного объекта уj. В объекте уj проверяется наличие E(kj, Ki), т.е. ключа доступа к объекту, зашифрованного на ключе пользователя. Если E(kj, Кi) не найден, то доступ пользователя отвергается. Иначе выполняются следующие действия.
3. Производится расшифрование ключа kj = D(yj, Ki), а затем - расшифрование объекта Oj= D(Yj, ki).
Под объектами доступа могут пониматься абоненты распределенной системы (сети связи). В этом случае ключ kj является ключом взаимодействия между пользователем i и абонентом j (это может быть также пользователь, терминал, принтер и т.д.). При рассмотрении сети связи обычно оперируют матрицей ключей, которая в явном виде отображает топологию связей в системе.
... на работу компьютера, является вирусом. Существуют следующие основные виды вредоносного ПО: · Троянские кони, программные закладки и сетевые черви; · Вирусы; · Шпионское ПО; · Руткиты; · Прочие вредоносные программы. 2.1 Троянские кони, программные закладки и сетевые черви Троянский конь – это программа, содержащая в себе некоторую разрушающую функцию, которая активизируется при ...
... ; 44 – нарушение правил эксплуатации ЭВМ и их сетей. Существенную роль в реализации несанкционированного доступа к информации играет компьютерная сеть Интернет, являясь чуть ли самым популярным каналом утечки информации. Поэтому на ее примере целесообразно рассмотреть современные угрозы безопасности и методы защиты от них, используемые средства защиты и услуги безопасности. Интернет действительно ...
... информации: в штатном режиме; изменения в штатном режиме работы; нештатный режим (аварийные ситуации). Глава 2. Обоснование способов защиты операционной системы от программных закладок типа троянский конь 2.1 Общие сведения о троянских программах Подсоединение локальных компьютерных сетей организаций к сети Internet приводит к необходимости уделять достаточно серьезное внимание ...
... с применением полиграфических компьютерных технологий? 10. Охарактеризуйте преступные деяния, предусмотренные главой 28 УК РФ «Преступления в сфере компьютерной информации». РАЗДЕЛ 2. БОРЬБА С ПРЕСТУПЛЕНИЯМИ В СФЕРЕ КОМПЬЮТЕРНОЙ ИНФОРМАЦИИ ГЛАВА 5. КОНТРОЛЬ НАД ПРЕСТУПНОСТЬЮВ СФЕРЕ ВЫСОКИХ ТЕХНОЛОГИЙ 5.1 Контроль над компьютерной преступностью в России Меры контроля над ...
0 комментариев